Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08584
Cited By
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"
50 / 192 papers shown
Title
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya-Qin Zhang
14
16
0
23 Oct 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
21
6
0
15 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
27
7
0
11 Oct 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao-quan Song
Shuo Yang
Ruizhe Zhang
27
49
0
09 Oct 2021
On the Impact of Stable Ranks in Deep Nets
B. Georgiev
L. Franken
Mayukh Mukherjee
Georgios Arvanitidis
13
3
0
05 Oct 2021
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Vaibhav Pulastya
Gaurav Nuti
Yash Kumar Atri
Tanmoy Chakraborty
NoLa
25
5
0
10 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
14
43
0
02 Sep 2021
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
41
37
0
25 Aug 2021
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?
Hiroaki Mikami
Kenji Fukumizu
Shogo Murai
Shuji Suzuki
Yuta Kikuchi
Taiji Suzuki
S. Maeda
Kohei Hayashi
38
12
0
25 Aug 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
26
17
0
04 Jul 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
25
273
0
29 Jun 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
31
74
0
28 Jun 2021
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci
Gregor Bachmann
Kevin Roth
Sebastian Nowozin
Thomas Hofmann
BDL
UQCV
16
32
0
11 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis
Baihe Huang
Xiaoxiao Li
Zhao-quan Song
Xin Yang
FedML
23
16
0
11 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
25
29
0
01 May 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
31
13
0
29 Apr 2021
A Neural Pre-Conditioning Active Learning Algorithm to Reduce Label Complexity
Seo Taek Kong
Soomin Jeon
Dongbin Na
Jaewon Lee
Honglak Lee
Kyu-Hwan Jung
13
6
0
08 Apr 2021
LocalDrop: A Hybrid Regularization for Deep Neural Networks
Ziqing Lu
Chang Xu
Bo Du
Takashi Ishida
L. Zhang
Masashi Sugiyama
19
14
0
01 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
21
2
0
26 Feb 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
33
78
0
24 Feb 2021
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
L. Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
107
46
0
29 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
28
21
0
13 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
16
354
0
17 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
45
257
0
18 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
18
18
0
09 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
31
23
0
27 Oct 2020
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip H. S. Torr
CLL
33
113
0
22 Oct 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Mingming Gong
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
16
26
0
22 Oct 2020
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher
Guangda Ji
Zhanxing Zhu
51
42
0
20 Oct 2020
For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal
Gal Kaplun
Boaz Barak
OOD
SSL
52
22
0
16 Oct 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
22
95
0
10 Oct 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
14
138
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
12
86
0
30 Sep 2020
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su
Yihang Chen
Tianle Cai
Tianhao Wu
Ruiqi Gao
Liwei Wang
J. Lee
6
85
0
22 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
19
93
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
13
42
0
21 Sep 2020
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
18
24
0
28 Aug 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
36
95
0
25 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
27
85
0
13 Jul 2020
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach
Luofeng Liao
You-Lin Chen
Zhuoran Yang
Bo Dai
Zhaoran Wang
Mladen Kolar
22
32
0
02 Jul 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
42
61
0
21 Jun 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
16
26
0
21 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,335
0
18 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
28
32
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
18
93
0
15 Jun 2020
Previous
1
2
3
4
Next