ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08584
  4. Cited By
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
    MLT
ArXivPDFHTML

Papers citing "Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"

50 / 192 papers shown
Title
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the
  Theoretical Perspectives
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya-Qin Zhang
14
16
0
23 Oct 2021
Provable Regret Bounds for Deep Online Learning and Control
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
21
6
0
15 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic
  Differential Equations
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
27
7
0
11 Oct 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao-quan Song
Shuo Yang
Ruizhe Zhang
27
49
0
09 Oct 2021
On the Impact of Stable Ranks in Deep Nets
On the Impact of Stable Ranks in Deep Nets
B. Georgiev
L. Franken
Mayukh Mukherjee
Georgios Arvanitidis
13
3
0
05 Oct 2021
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Vaibhav Pulastya
Gaurav Nuti
Yash Kumar Atri
Tanmoy Chakraborty
NoLa
25
5
0
10 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at
  Initialization
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
14
43
0
02 Sep 2021
Understanding the Generalization of Adam in Learning Neural Networks
  with Proper Regularization
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
41
37
0
25 Aug 2021
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your
  Pre-training Effective?
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?
Hiroaki Mikami
Kenji Fukumizu
Shogo Murai
Shuji Suzuki
Yuta Kikuchi
Taiji Suzuki
S. Maeda
Kohei Hayashi
38
12
0
25 Aug 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
26
17
0
04 Jul 2021
The Values Encoded in Machine Learning Research
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
25
273
0
29 Jun 2021
Small random initialization is akin to spectral learning: Optimization
  and generalization guarantees for overparameterized low-rank matrix
  reconstruction
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
31
74
0
28 Jun 2021
Precise characterization of the prior predictive distribution of deep
  ReLU networks
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci
Gregor Bachmann
Kevin Roth
Sebastian Nowozin
Thomas Hofmann
BDL
UQCV
16
32
0
11 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning
  Convergence Analysis
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis
Baihe Huang
Xiaoxiao Li
Zhao-quan Song
Xin Yang
FedML
23
16
0
11 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
25
29
0
01 May 2021
Generalization Guarantees for Neural Architecture Search with
  Train-Validation Split
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
31
13
0
29 Apr 2021
A Neural Pre-Conditioning Active Learning Algorithm to Reduce Label
  Complexity
A Neural Pre-Conditioning Active Learning Algorithm to Reduce Label Complexity
Seo Taek Kong
Soomin Jeon
Dongbin Na
Jaewon Lee
Honglak Lee
Kyu-Hwan Jung
13
6
0
08 Apr 2021
LocalDrop: A Hybrid Regularization for Deep Neural Networks
LocalDrop: A Hybrid Regularization for Deep Neural Networks
Ziqing Lu
Chang Xu
Bo Du
Takashi Ishida
L. Zhang
Masashi Sugiyama
19
14
0
01 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
21
2
0
26 Feb 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
On the Validity of Modeling SGD with Stochastic Differential Equations
  (SDEs)
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
33
78
0
24 Feb 2021
A linearized framework and a new benchmark for model selection for
  fine-tuning
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
L. Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
107
46
0
29 Jan 2021
Reproducing Activation Function for Deep Learning
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
28
21
0
13 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and
  Self-Distillation in Deep Learning
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
16
354
0
17 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
45
257
0
18 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
18
18
0
09 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
31
23
0
27 Oct 2020
Continual Learning in Low-rank Orthogonal Subspaces
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip H. S. Torr
CLL
33
113
0
22 Oct 2020
Deep Learning is Singular, and That's Good
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Mingming Gong
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
16
26
0
22 Oct 2020
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data
  Efficiency and Imperfect Teacher
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher
Guangda Ji
Zhanxing Zhu
51
42
0
20 Oct 2020
For self-supervised learning, Rationality implies generalization,
  provably
For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal
Gal Kaplun
Boaz Barak
OOD
SSL
52
22
0
16 Oct 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
22
95
0
10 Oct 2020
On the linearity of large non-linear models: when and why the tangent
  kernel is constant
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
14
138
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
12
86
0
30 Sep 2020
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su
Yihang Chen
Tianle Cai
Tianhao Wu
Ruiqi Gao
Liwei Wang
J. Lee
6
85
0
22 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
19
93
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
13
42
0
21 Sep 2020
Predicting Training Time Without Training
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
18
24
0
28 Aug 2020
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and
  Generalization under Lazy Training
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
36
95
0
25 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs
  Training Accuracy
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
27
85
0
13 Jul 2020
Provably Efficient Neural Estimation of Structural Equation Model: An
  Adversarial Approach
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach
Luofeng Liao
You-Lin Chen
Zhuoran Yang
Bo Dai
Zhaoran Wang
Mladen Kolar
22
32
0
02 Jul 2020
Generalisation Guarantees for Continual Learning with Orthogonal
  Gradient Descent
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
42
61
0
21 Jun 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration
  for Mean-Field Reinforcement Learning
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
16
26
0
21 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,335
0
18 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
28
32
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
18
93
0
15 Jun 2020
Previous
1234
Next