Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1901.09036
Cited By
v1
v2
v3
v4 (latest)
Orthogonal Statistical Learning
25 January 2019
Dylan J. Foster
Vasilis Syrgkanis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Orthogonal Statistical Learning"
50 / 129 papers shown
Title
Asymptotic Theory and Phase Transitions for Variable Importance in Quantile Regression Forests
Tomoshige Nakamura
Hiroshi Shiraishi
53
0
0
28 Nov 2025
DeepBlip: Estimating Conditional Average Treatment Effects Over Time
Haorui Ma
Dennis Frauen
Stefan Feuerriegel
BDL
175
0
0
18 Nov 2025
Policy Learning with Abstention
Ayush Sawarni
Jikai Jin
Justin Whitehouse
Vasilis Syrgkanis
OffRL
257
0
0
22 Oct 2025
An Orthogonal Learner for Individualized Outcomes in Markov Decision Processes
Emil Javurek
Valentyn Melnychuk
Jonas Schweisthal
Konstantin Hess
Dennis Frauen
Stefan Feuerriegel
112
0
0
30 Sep 2025
Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
123
0
0
29 Sep 2025
GDR-learners: Orthogonal Learning of Generative Models for Potential Outcomes
Valentyn Melnychuk
Stefan Feuerriegel
66
0
0
26 Sep 2025
Debiased Front-Door Learners for Heterogeneous Effects
Yonghan Jung
CML
73
0
0
26 Sep 2025
Estimating Heterogeneous Causal Effect on Networks via Orthogonal Learning
Yuanchen Wu
Yubai Yuan
CML
157
1
0
23 Sep 2025
DoubleGen: Debiased Generative Modeling of Counterfactuals
Alex Luedtke
Kenji Fukumizu
101
1
0
20 Sep 2025
Causal Clustering for Conditional Average Treatment Effects Estimation and Subgroup Discovery
Zilong Wang
Turgay Ayer
Shihao Yang
CML
105
0
0
06 Sep 2025
Robust estimation of heterogeneous treatment effects in randomized trials leveraging external data
R. Karlsson
Piersilvio De Bartolomeis
Issa J. Dahabreh
Jesse H. Krijthe
CML
118
0
0
04 Jul 2025
Estimation of Treatment Effects in Extreme and Unobserved Data
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
110
0
0
16 Jun 2025
Foundation Models for Causal Inference via Prior-Data Fitted Networks
Yuchen Ma
Dennis Frauen
Emil Javurek
Stefan Feuerriegel
CML
AI4CE
403
7
0
12 Jun 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
186
5
0
09 Jun 2025
PrivATE: Differentially Private Confidence Intervals for Average Treatment Effects
Maresa Schröder
Justin Hartenstein
Stefan Feuerriegel
291
1
0
27 May 2025
TabPFN: One Model to Rule Them All?
Qiong Zhang
Yan Shuo Tan
Qinglong Tian
Pengfei Li
206
5
0
26 May 2025
Orthogonal Survival Learners for Estimating Heterogeneous Treatment Effects from Time-to-Event Data
Dennis Frauen
Maresa Schröder
Konstantin Hess
Stefan Feuerriegel
CML
227
2
0
19 May 2025
Treatment Effect Estimation for Optimal Decision-Making
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Mihaela van der Schaar
Stefan Feuerriegel
CML
244
2
0
19 May 2025
Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction
Maximilian Schuessler
Erik Sverdrup
Robert Tibshirani
CML
342
0
0
01 May 2025
Differentially Private Learners for Heterogeneous Treatment Effects
International Conference on Learning Representations (ICLR), 2025
Maresa Schröder
Valentyn Melnychuk
Stefan Feuerriegel
CML
309
3
0
05 Mar 2025
Orthogonal Representation Learning for Estimating Causal Quantities
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
OOD
BDL
426
4
0
06 Feb 2025
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Neural Information Processing Systems (NeurIPS), 2024
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
467
5
0
05 Nov 2024
Training and Evaluating Causal Forecasting Models for Time-Series
Thomas Crasson
Yacine Nabet
Mathias Lécuyer
CML
AI4TS
313
1
0
31 Oct 2024
DiffPO: A causal diffusion model for learning distributions of potential outcomes
Neural Information Processing Systems (NeurIPS), 2024
Yuchen Ma
Valentyn Melnychuk
Jonas Schweisthal
Stefan Feuerriegel
DiffM
360
15
0
11 Oct 2024
Causal machine learning for predicting treatment outcomes
Nature Network Boston (NNB), 2024
Stefan Feuerriegel
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Konstantin Hess
Alicia Curth
Stefan Bauer
Niki Kilbertus
Isaac S. Kohane
Mihaela van der Schaar
CML
322
220
0
11 Oct 2024
Automatic debiasing of neural networks via moment-constrained learning
CLEaR (CLEaR), 2024
Christian L. Hines
Oliver J. Hines
CML
OOD
354
1
0
29 Sep 2024
Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables
Yang Xie
Ziqi Xu
Debo Cheng
Jiuyong Li
Lin Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
142
1
0
13 Aug 2024
Causal inference through multi-stage learning and doubly robust deep neural networks
Yuqian Zhang
Jelena Bradic
OOD
CML
216
2
0
11 Jul 2024
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Dennis Frauen
Konstantin Hess
Stefan Feuerriegel
376
13
0
07 Jul 2024
Structured Difference-of-Q via Orthogonal Learning
Defu Cao
Angela Zhou
334
0
0
12 Jun 2024
Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
Miruna Oprescu
Nathan Kallus
CML
193
1
0
10 Jun 2024
Heterogeneous Treatment Effects in Panel Data
R. Levi
Elisabeth Paulson
Georgia Perakis
Emily Zhang
CML
140
0
0
09 Jun 2024
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
Jonas Schweisthal
Dennis Frauen
M. Schaar
Stefan Feuerriegel
CML
258
8
0
04 Jun 2024
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
367
3
0
04 Jun 2024
Contextual Linear Optimization with Partial Feedback
Yichun Hu
Nathan Kallus
Xiaojie Mao
Yanchen Wu
369
0
0
26 May 2024
Taking a Moment for Distributional Robustness
Jabari Hastings
Christopher Jung
Charlotte Peale
Vasilis Syrgkanis
OOD
189
2
0
08 May 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Annals of Statistics (Ann. Stat.), 2024
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
694
4
0
07 May 2024
Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty
Kaizhao Liu
Jose H. Blanchet
Lexing Ying
Yiping Lu
288
1
0
29 Apr 2024
Collaborative Heterogeneous Causal Inference Beyond Meta-analysis
Tianyu Guo
Sai Praneeth Karimireddy
Michael I. Jordan
FedML
242
4
0
24 Apr 2024
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes
Andrew Bennett
Nathan Kallus
Miruna Oprescu
Wen Sun
Kaiwen Wang
AAML
OffRL
222
2
0
29 Mar 2024
Regularized DeepIV with Model Selection
Zihao Li
Hui Lan
Vasilis Syrgkanis
Mengdi Wang
Masatoshi Uehara
210
4
0
07 Mar 2024
Applied Causal Inference Powered by ML and AI
Victor Chernozhukov
Christian Hansen
Nathan Kallus
Martin Spindler
Vasilis Syrgkanis
CML
278
47
0
04 Mar 2024
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
Raj Agrawal
Sam Witty
Andy Zane
Eli Bingham
264
3
0
29 Feb 2024
Unveiling the Potential of Robustness in Evaluating Causal Inference Models
Yiyan Huang
Cheuk Hang Leung
Siyi Wang
Yijun Li
Qi Wu
OOD
CML
168
1
0
28 Feb 2024
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation
Jikai Jin
Vasilis Syrgkanis
CML
492
6
0
22 Feb 2024
Causal hybrid modeling with double machine learning
Kai-Hendrik Cohrs
Gherardo Varando
Nuno Carvalhais
Markus Reichstein
Gustau Camps-Valls
397
15
0
20 Feb 2024
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
Jan Rabenseifner
Jan Teichert-Kluge
Philipp Bach
Victor Chernozhukov
Martin Spindler
Suhas Vijaykumar
BDL
CML
156
10
0
01 Feb 2024
Causal Machine Learning for Cost-Effective Allocation of Development Aid
Milan Kuzmanovic
Dennis Frauen
Tobias Hatt
Stefan Feuerriegel
266
12
0
30 Jan 2024
Accelerating Causal Algorithms for Industrial-scale Data: A Distributed Computing Approach with Ray Framework
International Conference on AI-ML-Systems (ICA), 2023
Vishal Verma
Vinod Reddy
Jaiprakash Ravi
152
1
0
22 Jan 2024
Inferring Heterogeneous Treatment Effects of Crashes on Highway Traffic: A Doubly Robust Causal Machine Learning Approach
Transportation Research Part C: Emerging Technologies (TRC), 2024
Shuang Li
Ziyuan Pu
Zhiyong Cui
Seunghyeon Lee
Xiucheng Guo
D. Ngoduy
CML
134
21
0
01 Jan 2024
1
2
3
Next