Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1901.09314
Cited By
v1
v2 (latest)
On Symmetric Losses for Learning from Corrupted Labels
27 January 2019
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Symmetric Losses for Learning from Corrupted Labels"
21 / 71 papers shown
Title
Fair Classification with Group-Dependent Label Noise
Jialu Wang
Yang Liu
Caleb C. Levy
NoLa
176
106
0
31 Oct 2020
On the intrinsic robustness to noise of some leading classifiers and symmetric loss function -- an empirical evaluation
Hugo Le Baher
V. Lemaire
Romain Trinquart Polytech Nantes
AAML
NoLa
109
1
0
22 Oct 2020
Classification with Rejection Based on Cost-sensitive Classification
Nontawat Charoenphakdee
Zhenghang Cui
Yivan Zhang
Masashi Sugiyama
254
68
0
22 Oct 2020
Robust Imitation Learning from Noisy Demonstrations
Voot Tangkaratt
Nontawat Charoenphakdee
Masashi Sugiyama
NoLa
146
29
0
20 Oct 2020
Importance Reweighting for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
NoLa
83
6
0
19 Oct 2020
Meta Soft Label Generation for Noisy Labels
G. Algan
ilkay Ulusoy
NoLa
124
42
0
11 Jul 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
128
464
0
24 Jun 2020
Learning from Label Proportions: A Mutual Contamination Framework
Clayton Scott
Jianxin Zhang
SSL
81
13
0
12 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
116
46
0
28 May 2020
Does label smoothing mitigate label noise?
Michal Lukasik
Srinadh Bhojanapalli
A. Menon
Surinder Kumar
NoLa
269
366
0
05 Mar 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
181
114
0
11 Jan 2020
Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey
G. Algan
ilkay Ulusoy
NoLa
VLM
157
346
0
11 Dec 2019
Mitigating Overfitting in Supervised Classification from Two Unlabeled Datasets: A Consistent Risk Correction Approach
Nan Lu
Tianyi Zhang
Gang Niu
Masashi Sugiyama
160
60
0
20 Oct 2019
Learning from Multiple Corrupted Sources, with Application to Learning from Label Proportions
Clayton Scott
Jianxin Zhang
74
7
0
10 Oct 2019
Learning Only from Relevant Keywords and Unlabeled Documents
Nontawat Charoenphakdee
Jongyeong Lee
Yiping Jin
Dittaya Wanvarie
Masashi Sugiyama
67
10
0
10 Oct 2019
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
Yang Liu
Hongyi Guo
NoLa
226
248
0
08 Oct 2019
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification
Han Bao
Masashi Sugiyama
93
19
0
29 May 2019
Derivative Manipulation for General Example Weighting
Xinshao Wang
Elyor Kodirov
Yang Hua
N. Robertson
NoLa
240
1
0
27 May 2019
Classification from Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization
Takuya Shimada
Han Bao
Issei Sato
Masashi Sugiyama
68
45
0
26 Apr 2019
Noise-tolerant fair classification
A. Lamy
Ziyuan Zhong
A. Menon
Nakul Verma
NoLa
156
77
0
30 Jan 2019
Complementary-Label Learning for Arbitrary Losses and Models
Takashi Ishida
Gang Niu
A. Menon
Masashi Sugiyama
VLM
141
118
0
10 Oct 2018
Previous
1
2