Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.10513
Cited By
Adversarial Examples Are a Natural Consequence of Test Error in Noise
29 January 2019
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are a Natural Consequence of Test Error in Noise"
50 / 196 papers shown
Title
On the Importance of Gaussianizing Representations
Daniel Eftekhari
Vardan Papyan
26
0
0
01 May 2025
RESQUE: Quantifying Estimator to Task and Distribution Shift for Sustainable Model Reusability
Vishwesh Sangarya
Jung-Eun Kim
69
0
0
20 Dec 2024
Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training
Junhao Dong
Xinghua Qu
Zhiyuan Wang
Yew-Soon Ong
AAML
48
1
0
05 Nov 2024
Complexity Matters: Effective Dimensionality as a Measure for Adversarial Robustness
David Khachaturov
Robert D. Mullins
AAML
25
0
0
24 Oct 2024
Stochastic Gradient Descent Jittering for Inverse Problems: Alleviating the Accuracy-Robustness Tradeoff
Peimeng Guan
Mark A. Davenport
28
0
0
18 Oct 2024
A practical approach to evaluating the adversarial distance for machine learning classifiers
Georg Siedel
Ekagra Gupta
Andrey Morozov
AAML
30
0
0
05 Sep 2024
Reassessing Noise Augmentation Methods in the Context of Adversarial Speech
Karla Pizzi
Matías Pizarro
Asja Fischer
28
0
0
03 Sep 2024
First line of defense: A robust first layer mitigates adversarial attacks
Janani Suresh
Nancy Nayak
Sheetal Kalyani
AAML
22
0
0
21 Aug 2024
A-BDD: Leveraging Data Augmentations for Safe Autonomous Driving in Adverse Weather and Lighting
Felix Assion
Florens Gressner
Nitin Augustine
Jona Klemenc
Ahmed Hammam
Alexandre Krattinger
Holger Trittenbach
Sascha Riemer
31
1
0
12 Aug 2024
Label Augmentation for Neural Networks Robustness
Fatemeh Amerehi
Patrick Healy
AAML
37
1
0
04 Aug 2024
Estimating Environmental Cost Throughout Model's Adaptive Life Cycle
Vishwesh Sangarya
Richard M. Bradford
Jung-Eun Kim
19
2
0
23 Jul 2024
CTBENCH: A Library and Benchmark for Certified Training
Yuhao Mao
Stefan Balauca
Martin Vechev
OOD
47
4
0
07 Jun 2024
Inference Attacks: A Taxonomy, Survey, and Promising Directions
Feng Wu
Lei Cui
Shaowen Yao
Shui Yu
39
2
0
04 Jun 2024
Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations
Davide Coppola
Hwee Kuan Lee
AAML
47
0
0
31 May 2024
Aggregate Representation Measure for Predictive Model Reusability
Vishwesh Sangarya
Richard M. Bradford
Jung-Eun Kim
27
2
0
15 May 2024
SeiT++: Masked Token Modeling Improves Storage-efficient Training
Min-Seob Lee
Song Park
Byeongho Heo
Dongyoon Han
Hyunjung Shim
MQ
VLM
21
1
0
15 Dec 2023
Augment the Pairs: Semantics-Preserving Image-Caption Pair Augmentation for Grounding-Based Vision and Language Models
Jingru Yi
Burak Uzkent
Oana Ignat
Zili Li
Amanmeet Garg
Xiang Yu
Linda Liu
VLM
25
1
0
05 Nov 2023
Improving Robustness via Tilted Exponential Layer: A Communication-Theoretic Perspective
Bhagyashree Puranik
Ahmad Beirami
Yao Qin
Upamanyu Madhow
AAML
15
0
0
02 Nov 2023
Dynamic Batch Norm Statistics Update for Natural Robustness
Shahbaz Rezaei
M. S. Norouzzadeh
8
0
0
31 Oct 2023
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
30
1
0
25 Oct 2023
Training Image Derivatives: Increased Accuracy and Universal Robustness
V. Avrutskiy
36
0
0
21 Oct 2023
OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift
Lin Li
Yifei Wang
Chawin Sitawarin
Michael W. Spratling
24
0
0
19 Oct 2023
Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust Closed-Loop Control
Neehal Tumma
Mathias Lechner
Noel Loo
Ramin Hasani
Daniela Rus
27
0
0
05 Oct 2023
Brain-like representational straightening of natural movies in robust feedforward neural networks
Tahereh Toosi
Elias B. Issa
20
5
0
26 Aug 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
30
3
0
20 Aug 2023
Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning
Kaijie Zhu
Jindong Wang
Xixu Hu
Xingxu Xie
G. Yang
AAML
22
23
0
01 Aug 2023
Learning Provably Robust Estimators for Inverse Problems via Jittering
Anselm Krainovic
Mahdi Soltanolkotabi
Reinhard Heckel
OOD
22
6
0
24 Jul 2023
A Theoretical Perspective on Subnetwork Contributions to Adversarial Robustness
Jovon Craig
Joshua Andle
Theodore S. Nowak
S. Y. Sekeh
AAML
34
0
0
07 Jul 2023
Generalization Across Experimental Parameters in Machine Learning Analysis of High Resolution Transmission Electron Microscopy Datasets
Katherine Sytwu
L. Dacosta
M. Scott
11
2
0
20 Jun 2023
Exploiting Frequency Spectrum of Adversarial Images for General Robustness
Chun Yang Tan
K. Kawamoto
Hiroshi Kera
AAML
OOD
26
1
0
15 May 2023
Investigating the Corruption Robustness of Image Classifiers with Random Lp-norm Corruptions
George J. Siedel
Weijia Shao
S. Vock
Andrey Morozov
17
1
0
09 May 2023
Hint-Aug: Drawing Hints from Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning
Zhongzhi Yu
Shang Wu
Y. Fu
Shunyao Zhang
Yingyan Lin
25
6
0
25 Apr 2023
AI Security Threats against Pervasive Robotic Systems: A Course for Next Generation Cybersecurity Workforce
Sudip Mittal
Jingdao Chen
SILM
23
1
0
15 Feb 2023
Semantic Image Segmentation: Two Decades of Research
G. Csurka
Riccardo Volpi
Boris Chidlovskii
3DV
24
50
0
13 Feb 2023
Linking convolutional kernel size to generalization bias in face analysis CNNs
Hao Liang
J. O. Caro
Vikram Maheshri
Ankit B. Patel
Guha Balakrishnan
CVBM
CML
13
0
0
07 Feb 2023
DeepAstroUDA: Semi-Supervised Universal Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection
A. Ćiprijanović
Ashia Lewis
K. Pedro
Sandeep Madireddy
Brian D. Nord
G. Perdue
Stefan M. Wild
36
14
0
03 Feb 2023
A Theoretical Study of The Effects of Adversarial Attacks on Sparse Regression
Deepak Maurya
Jean Honorio
AAML
14
0
0
21 Dec 2022
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
21
7
0
18 Dec 2022
What does a deep neural network confidently perceive? The effective dimension of high certainty class manifolds and their low confidence boundaries
Stanislav Fort
E. D. Cubuk
Surya Ganguli
S. Schoenholz
12
5
0
11 Oct 2022
Learning Robust Kernel Ensembles with Kernel Average Pooling
P. Bashivan
Adam Ibrahim
Amirozhan Dehghani
Yifei Ren
OOD
16
5
0
30 Sep 2022
Measuring Overfitting in Convolutional Neural Networks using Adversarial Perturbations and Label Noise
Svetlana Pavlitskaya
Joël Oswald
J. Marius Zöllner
NoLa
AAML
22
5
0
27 Sep 2022
Revisiting Outer Optimization in Adversarial Training
Ali Dabouei
Fariborz Taherkhani
Sobhan Soleymani
Nasser M. Nasrabadi
AAML
19
4
0
02 Sep 2022
Robust Prototypical Few-Shot Organ Segmentation with Regularized Neural-ODEs
Prashant Pandey
Mustafa Chasmai
Tanuj Sur
Brejesh Lall
8
11
0
26 Aug 2022
A Novel Plug-and-Play Approach for Adversarially Robust Generalization
Deepak Maurya
Adarsh Barik
Jean Honorio
OOD
AAML
27
0
0
19 Aug 2022
Abutting Grating Illusion: Cognitive Challenge to Neural Network Models
Jinyu Fan
Yi Zeng
AAML
29
1
0
08 Aug 2022
p
p
p
-DkNN: Out-of-Distribution Detection Through Statistical Testing of Deep Representations
Adam Dziedzic
Stephan Rabanser
Mohammad Yaghini
Armin Ale
Murat A. Erdogdu
Nicolas Papernot
AAML
15
2
0
25 Jul 2022
Bounding generalization error with input compression: An empirical study with infinite-width networks
A. Galloway
A. Golubeva
Mahmoud Salem
Mihai Nica
Yani Andrew Ioannou
Graham W. Taylor
MLT
AI4CE
24
4
0
19 Jul 2022
Utilizing Class Separation Distance for the Evaluation of Corruption Robustness of Machine Learning Classifiers
George J. Siedel
S. Vock
Andrey Morozov
Stefan Voss
6
3
0
27 Jun 2022
Measuring Lower Bounds of Local Differential Privacy via Adversary Instantiations in Federated Learning
Marin Matsumoto
Tsubasa Takahashi
Seng Pei Liew
M. Oguchi
FedML
BDL
15
0
0
18 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
M. Petreczky
27
1
0
16 Jun 2022
1
2
3
4
Next