Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.10513
Cited By
Adversarial Examples Are a Natural Consequence of Test Error in Noise
29 January 2019
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are a Natural Consequence of Test Error in Noise"
46 / 196 papers shown
Title
Adversarial Distributional Training for Robust Deep Learning
Yinpeng Dong
Zhijie Deng
Tianyu Pang
Hang Su
Jun Zhu
OOD
6
121
0
14 Feb 2020
Adversarial Data Encryption
Yingdong Hu
Liang Zhang
W. Shan
Xiaoxiao Qin
Jinghuai Qi
Zhenzhou Wu
Yang Yuan
FedML
MedIm
15
0
0
10 Feb 2020
On the Robustness of Face Recognition Algorithms Against Attacks and Bias
Richa Singh
Akshay Agarwal
Maneet Singh
Shruti Nagpal
Mayank Vatsa
CVBM
AAML
44
65
0
07 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
11
34
0
05 Feb 2020
REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild
Rahul Duggal
Scott Freitas
Cao Xiao
Duen Horng Chau
Jimeng Sun
20
22
0
29 Jan 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
19
64
0
16 Jan 2020
Reject Illegal Inputs with Generative Classifier Derived from Any Discriminative Classifier
Xin Wang
11
0
0
02 Jan 2020
Jacobian Adversarially Regularized Networks for Robustness
Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
AAML
10
74
0
21 Dec 2019
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai
Kai Arulkumaran
Tamara Gerbert
Samyakh Tukra
Feryal M. P. Behbahani
Anil Anthony Bharath
9
27
0
18 Dec 2019
Statistically Robust Neural Network Classification
Benjie Wang
Stefan Webb
Tom Rainforth
OOD
AAML
8
19
0
10 Dec 2019
CAMUS: A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators
Julien Girard-Satabin
Guillaume Charpiat
Zakaria Chihani
Marc Schoenauer
OOD
AAML
9
2
0
25 Nov 2019
Robust Deep Neural Networks Inspired by Fuzzy Logic
Minh Le
OOD
AAML
AI4CE
17
0
0
20 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
14
3
0
19 Nov 2019
ODE guided Neural Data Augmentation Techniques for Time Series Data and its Benefits on Robustness
A. Sarkar
A. Raj
Raghu Sesha Iyengar
AAML
AI4TS
26
0
0
15 Oct 2019
Predicting with High Correlation Features
Devansh Arpit
Caiming Xiong
R. Socher
OODD
OOD
12
7
0
01 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
34
3,412
0
30 Sep 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
17
92
0
26 Sep 2019
Towards Model-Agnostic Adversarial Defenses using Adversarially Trained Autoencoders
Pratik Vaishnavi
Kevin Eykholt
A. Prakash
Amir Rahmati
AAML
12
2
0
12 Sep 2019
Structural Robustness for Deep Learning Architectures
Carlos Lassance
Vincent Gripon
Jian Tang
Antonio Ortega
OOD
14
2
0
11 Sep 2019
PDA: Progressive Data Augmentation for General Robustness of Deep Neural Networks
Hang Yu
Aishan Liu
Xianglong Liu
Gen Li
Ping Luo
R. Cheng
Jichen Yang
Chongzhi Zhang
AAML
16
10
0
11 Sep 2019
Benchmarking the Robustness of Semantic Segmentation Models
Christoph Kamann
Carsten Rother
VLM
UQCV
6
160
0
14 Aug 2019
Robustness properties of Facebook's ResNeXt WSL models
Emin Orhan
VLM
8
30
0
17 Jul 2019
Stateful Detection of Black-Box Adversarial Attacks
Steven Chen
Nicholas Carlini
D. Wagner
AAML
MLAU
12
119
0
12 Jul 2019
Learning Data Augmentation Strategies for Object Detection
Barret Zoph
E. D. Cubuk
Golnaz Ghiasi
Tsung-Yi Lin
Jonathon Shlens
Quoc V. Le
25
523
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
11
104
0
25 Jun 2019
A Fourier Perspective on Model Robustness in Computer Vision
Dong Yin
Raphael Gontijo-Lopes
Jonathon Shlens
E. D. Cubuk
Justin Gilmer
OOD
15
486
0
21 Jun 2019
Lower Bounds for Adversarially Robust PAC Learning
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
11
26
0
13 Jun 2019
Using learned optimizers to make models robust to input noise
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
13
26
0
08 Jun 2019
A cryptographic approach to black box adversarial machine learning
Kevin Shi
Daniel J. Hsu
Allison Bishop
AAML
6
3
0
07 Jun 2019
Variational Resampling Based Assessment of Deep Neural Networks under Distribution Shift
Xudong Sun
Alexej Gossmann
Yu Wang
B. Bischl
OOD
17
5
0
07 Jun 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
16
204
0
06 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
8
203
0
05 Jun 2019
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
8
2
0
05 Jun 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
19
187
0
29 May 2019
Convergence and Margin of Adversarial Training on Separable Data
Zachary B. Charles
Shashank Rajput
S. Wright
Dimitris Papailiopoulos
AAML
18
16
0
22 May 2019
Does Data Augmentation Lead to Positive Margin?
Shashank Rajput
Zhili Feng
Zachary B. Charles
Po-Ling Loh
Dimitris Papailiopoulos
17
37
0
08 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
A. Madry
SILM
11
1,806
0
06 May 2019
Batch Normalization is a Cause of Adversarial Vulnerability
A. Galloway
A. Golubeva
T. Tanay
M. Moussa
Graham W. Taylor
ODL
AAML
9
80
0
06 May 2019
Rallying Adversarial Techniques against Deep Learning for Network Security
Joseph Clements
Yuzhe Yang
Ankur A Sharma
Hongxin Hu
Yingjie Lao
AAML
15
51
0
27 Mar 2019
Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
11
18
0
28 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
A. Madry
Alexey Kurakin
ELM
AAML
6
890
0
18 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,990
0
08 Feb 2019
Random Spiking and Systematic Evaluation of Defenses Against Adversarial Examples
Huangyi Ge
Sze Yiu Chau
Bruno Ribeiro
Ninghui Li
AAML
16
1
0
05 Dec 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
15
341
0
10 Sep 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
38
224
0
19 Feb 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Previous
1
2
3
4