ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.11058
  4. Cited By
HyperGAN: A Generative Model for Diverse, Performant Neural Networks

HyperGAN: A Generative Model for Diverse, Performant Neural Networks

30 January 2019
Neale Ratzlaff
Fuxin Li
ArXivPDFHTML

Papers citing "HyperGAN: A Generative Model for Diverse, Performant Neural Networks"

20 / 20 papers shown
Title
Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types
Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types
Muhammad Umair Danish
Katarina Grolinger
AI4TS
82
3
0
07 Feb 2025
Towards Scalable and Versatile Weight Space Learning
Towards Scalable and Versatile Weight Space Learning
Konstantin Schurholt
Michael W. Mahoney
Damian Borth
50
15
0
14 Jun 2024
Unleash Graph Neural Networks from Heavy Tuning
Unleash Graph Neural Networks from Heavy Tuning
Lequan Lin
Dai Shi
Andi Han
Zhiyong Wang
Junbin Gao
AI4CE
27
2
0
21 May 2024
HyperFast: Instant Classification for Tabular Data
HyperFast: Instant Classification for Tabular Data
David Bonet
D. M. Montserrat
Xavier Giró-i-Nieto
A. Ioannidis
46
15
0
22 Feb 2024
Principled Weight Initialization for Hypernetworks
Principled Weight Initialization for Hypernetworks
Oscar Chang
Lampros Flokas
Hod Lipson
22
73
0
13 Dec 2023
HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
  Representations via Knowledge Distillation
HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural Representations via Knowledge Distillation
Qi Wu
David Bauer
Yuyang Chen
Kwan-Liu Ma
33
14
0
09 Apr 2023
HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
HyperNeRFGAN: Hypernetwork approach to 3D NeRF GAN
Adam Kania
Artur Kasymov
Maciej Ziȩba
P. Spurek
38
9
0
27 Jan 2023
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
64
0
26 Sep 2022
Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile
  Edge
Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile Edge
Qun Song
Zhenyu Yan
W. Luo
Rui Tan
AAML
11
2
0
18 Apr 2022
Learning the Effect of Registration Hyperparameters with HyperMorph
Learning the Effect of Registration Hyperparameters with HyperMorph
Andrew Hoopes
Malte Hoffmann
Douglas N. Greve
Bruce Fischl
John Guttag
Adrian V. Dalca
28
38
0
30 Mar 2022
Low-Loss Subspace Compression for Clean Gains against Multi-Agent
  Backdoor Attacks
Low-Loss Subspace Compression for Clean Gains against Multi-Agent Backdoor Attacks
Siddhartha Datta
N. Shadbolt
AAML
26
6
0
07 Mar 2022
Meta Internal Learning
Meta Internal Learning
Raphael Bensadoun
Shir Gur
Tomer Galanti
Lior Wolf
GAN
28
8
0
06 Oct 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
  Solutions with Superior OOD Generalization
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
Anton Van Den Hengel
25
86
0
12 May 2021
HyperDynamics: Meta-Learning Object and Agent Dynamics with
  Hypernetworks
HyperDynamics: Meta-Learning Object and Agent Dynamics with Hypernetworks
Zhou Xian
Shamit Lal
H. Tung
Emmanouil Antonios Platanios
Katerina Fragkiadaki
AI4CE
33
23
0
17 Mar 2021
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
818
0
20 Jan 2020
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
16
12
0
19 Nov 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1