Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00139
Cited By
v1
v2
v3
v4 (latest)
Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models
1 February 2019
Stefano Sarao Mannelli
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models"
31 / 31 papers shown
Title
Computational Thresholds in Multi-Modal Learning via the Spiked Matrix-Tensor Model
Hugo Tabanelli
Pierre Mergny
Lenka Zdeborová
Florent Krzakala
50
0
0
03 Jun 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
Cengiz Pehlevan
AI4CE
241
1
0
04 Feb 2025
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
144
17
0
26 Sep 2024
Infinite Limits of Multi-head Transformer Dynamics
Blake Bordelon
Hamza Tahir Chaudhry
Cengiz Pehlevan
AI4CE
117
14
0
24 May 2024
Sliding down the stairs: how correlated latent variables accelerate learning with neural networks
Lorenzo Bardone
Sebastian Goldt
78
7
0
12 Apr 2024
From Zero to Hero: How local curvature at artless initial conditions leads away from bad minima
Tony Bonnaire
Giulio Biroli
C. Cammarota
113
0
0
04 Mar 2024
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi
Emanuele Troiani
Luca Arnaboldi
Luca Pesce
Lenka Zdeborová
Florent Krzakala
MLT
120
30
0
05 Feb 2024
A Dynamical Model of Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
148
44
0
02 Feb 2024
Topological complexity of spiked random polynomials and finite-rank spherical integrals
Vanessa Piccolo
47
1
0
19 Dec 2023
Stochastic Gradient Descent outperforms Gradient Descent in recovering a high-dimensional signal in a glassy energy landscape
Persia Jana Kamali
Pierfrancesco Urbani
75
6
0
09 Sep 2023
Gradient flow on extensive-rank positive semi-definite matrix denoising
A. Bodin
N. Macris
86
4
0
16 Mar 2023
Average-Case Complexity of Tensor Decomposition for Low-Degree Polynomials
Alexander S. Wein
113
11
0
10 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
225
71
0
27 Oct 2022
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
83
10
0
05 Sep 2022
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
94
21
0
19 Aug 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
87
85
0
19 May 2022
High-dimensional Asymptotics of Langevin Dynamics in Spiked Matrix Models
Tengyuan Liang
Subhabrata Sen
Pragya Sur
81
7
0
09 Apr 2022
Selective Multiple Power Iteration: from Tensor PCA to gradient-based exploration of landscapes
M. Ouerfelli
M. Tamaazousti
V. Rivasseau
75
7
0
23 Dec 2021
Statistical limits of dictionary learning: random matrix theory and the spectral replica method
Jean Barbier
N. Macris
119
26
0
14 Sep 2021
An Analytical Theory of Curriculum Learning in Teacher-Student Networks
Luca Saglietti
Stefano Sarao Mannelli
Andrew M. Saxe
57
26
0
15 Jun 2021
Rank-one matrix estimation: analytic time evolution of gradient descent dynamics
A. Bodin
N. Macris
49
5
0
25 May 2021
Analytical Study of Momentum-Based Acceleration Methods in Paradigmatic High-Dimensional Non-Convex Problems
Stefano Sarao Mannelli
Pierfrancesco Urbani
61
10
0
23 Feb 2021
A spin-glass model for the loss surfaces of generative adversarial networks
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
GAN
88
12
0
07 Jan 2021
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
79
49
0
27 Jun 2020
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
88
69
0
10 Jun 2020
The Loss Surfaces of Neural Networks with General Activation Functions
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
ODL
AI4CE
133
26
0
08 Apr 2020
Online stochastic gradient descent on non-convex losses from high-dimensional inference
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
108
91
0
23 Mar 2020
Iterative Averaging in the Quest for Best Test Error
Diego Granziol
Xingchen Wan
Samuel Albanie
Stephen J. Roberts
66
3
0
02 Mar 2020
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
62
4
0
02 Jan 2020
Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio
Dmitriy Kunisky
Alexander S. Wein
Afonso S. Bandeira
99
148
0
26 Jul 2019
Who is Afraid of Big Bad Minima? Analysis of Gradient-Flow in a Spiked Matrix-Tensor Model
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Lenka Zdeborová
62
43
0
18 Jul 2019
1