Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.02102
Cited By
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
6 February 2019
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling"
50 / 55 papers shown
Title
Evolved Hierarchical Masking for Self-Supervised Learning
Zhanzhou Feng
Shiliang Zhang
49
0
0
12 Apr 2025
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
High Fidelity Image Synthesis With Deep VAEs In Latent Space
Troy Luhman
Eric Luhman
DRL
3DV
31
7
0
23 Mar 2023
A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT
Yihan Cao
Siyu Li
Yixin Liu
Zhiling Yan
Yutong Dai
Philip S. Yu
Lichao Sun
29
506
0
07 Mar 2023
Discouraging posterior collapse in hierarchical Variational Autoencoders using context
Anna Kuzina
Jakub M. Tomczak
BDL
DRL
23
1
0
20 Feb 2023
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
27
21
0
14 Feb 2023
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Batuhan Koyuncu
Pablo Sánchez-Martín
I. Peis
Pablo Martínez Olmos
Isabel Valera
BDL
GAN
DRL
22
5
0
13 Feb 2023
A Multi-Resolution Framework for U-Nets with Applications to Hierarchical VAEs
Fabian Falck
Christopher Williams
D. Danks
George Deligiannidis
C. Yau
Chris Holmes
Arnaud Doucet
M. Willetts
16
8
0
19 Jan 2023
Long-horizon video prediction using a dynamic latent hierarchy
Alexey Zakharov
Qinghai Guo
Z. Fountas
28
4
0
29 Dec 2022
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Anji Liu
Honghua Zhang
Guy Van den Broeck
TPM
17
24
0
10 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion
Fabian Duffhauss
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
36
4
0
22 Sep 2022
Fast Lossless Neural Compression with Integer-Only Discrete Flows
Siyu Wang
Jianfei Chen
Chongxuan Li
Jun Zhu
Bo Zhang
MQ
19
7
0
17 Jun 2022
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
F. Csikor
B. Meszéna
Bence Szabó
Gergő Orbán
BDL
DRL
19
5
0
01 Jun 2022
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
183
49
0
30 May 2022
Novel Applications for VAE-based Anomaly Detection Systems
Luca Bergamin
Tommaso Carraro
Mirko Polato
F. Aiolli
DRL
19
6
0
26 Apr 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
Max W. Y. Lam
J. Wang
Dan Su
Dong Yu
DiffM
29
92
0
25 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Image Super-Resolution With Deep Variational Autoencoders
Darius Chira
Ilian Haralampiev
Ole Winther
Andrea Dittadi
Valentin Liévin
DRL
30
32
0
17 Mar 2022
Long Document Summarization with Top-down and Bottom-up Inference
Bo Pang
Erik Nijkamp
Wojciech Kry'sciñski
Silvio Savarese
Yingbo Zhou
Caiming Xiong
RALM
BDL
16
55
0
15 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
21
18
0
02 Mar 2022
Benchmarking Generative Latent Variable Models for Speech
Jakob Drachmann Havtorn
Lasse Borgholt
Søren Hauberg
J. Frellsen
Lars Maaløe
18
3
0
22 Feb 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
18
21
0
07 Feb 2022
Stay Positive: Non-Negative Image Synthesis for Augmented Reality
Katie Z Luo
Guandao Yang
Wenqi Xian
Harald Haraldsson
B. Hariharan
Serge J. Belongie
DiffM
15
5
0
01 Feb 2022
Out of Distribution Detection on ImageNet-O
Anugya Srivastava
S. Jain
Mugdha Thigle
OOD
54
5
0
23 Jan 2022
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
33
47
0
27 Oct 2021
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
174
163
0
21 Oct 2021
Bilateral Denoising Diffusion Models
Max W. Y. Lam
Jun Wang
Rongjie Huang
Dan Su
Dong Yu
DiffM
14
42
0
26 Aug 2021
Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
Zhibin Duan
Dongsheng Wang
Bo Chen
Chaojie Wang
Wenchao Chen
Yewen Li
J. Ren
Mingyuan Zhou
BDL
32
38
0
30 Jun 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
25
274
0
29 Jun 2021
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
658
0
10 Jun 2021
On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition
C. Bai
Hsuan-Tien Lin
Colin Raffel
Wendy Kan
18
34
0
06 Jun 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
26
10
0
10 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
480
0
08 Mar 2021
Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction
Bohan Wu
Suraj Nair
Roberto Martin-Martin
Li Fei-Fei
Chelsea Finn
DRL
24
99
0
06 Mar 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
31
336
0
20 Nov 2020
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
18
9
0
26 Oct 2020
A Quaternion-Valued Variational Autoencoder
Eleonora Grassucci
Danilo Comminiello
A. Uncini
DRL
20
21
0
22 Oct 2020
Conditional Generative Modeling via Learning the Latent Space
Sameera Ramasinghe
Kanchana Ranasinghe
Salman Khan
Nick Barnes
Stephen Gould
BDL
31
9
0
07 Oct 2020
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
30
13
0
05 Oct 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
39
50
0
16 Jul 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
24
59
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,915
0
19 Jun 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
26
31
0
30 Jan 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
16
75
0
23 Dec 2019
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
James Townsend
Thomas Bird
Julius Kunze
David Barber
BDL
VLM
13
56
0
20 Dec 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
14
179
0
06 Nov 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
25
371
0
01 Jul 2019
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
18
14
0
31 May 2019
1
2
Next