ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06977
  4. Cited By
Evaluating model calibration in classification

Evaluating model calibration in classification

19 February 2019
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Evaluating model calibration in classification"

50 / 127 papers shown
Title
Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Gerardo Flores
Alyssa H. Smith
Julia A Fukuyama
Ashia C. Wilson
24
0
0
17 Jun 2025
Beyond Segmentation: Confidence-Aware and Debiased Estimation of Ratio-based Biomarkers
Beyond Segmentation: Confidence-Aware and Debiased Estimation of Ratio-based Biomarkers
Jiameng Li
Teodora Popordanoska
Sebastian G. Gruber
F. Maes
Matthew B. Blaschko
43
0
0
26 May 2025
Performance Estimation in Binary Classification Using Calibrated Confidence
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
97
0
0
08 May 2025
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Haoyang Luo
Linwei Tao
Minjing Dong
Chang Xu
141
0
0
18 Apr 2025
Similarity-Distance-Magnitude Universal Verification
Similarity-Distance-Magnitude Universal Verification
Allen Schmaltz
UQCVAAML
552
0
0
27 Feb 2025
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
235
2
0
24 Feb 2025
A calibration test for evaluating set-based epistemic uncertainty representations
A calibration test for evaluating set-based epistemic uncertainty representations
Mira Jürgens
Thomas Mortier
Eyke Hüllermeier
Viktor Bengs
Willem Waegeman
95
1
0
22 Feb 2025
Early Stopping in Contextual Bandits and Inferences
Early Stopping in Contextual Bandits and Inferences
Zihan Cui
81
0
0
05 Feb 2025
Rethinking Early Stopping: Refine, Then Calibrate
Rethinking Early Stopping: Refine, Then Calibrate
Eugene Berta
David Holzmüller
Michael I. Jordan
Francis Bach
141
1
0
31 Jan 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
105
3
0
28 Jan 2025
On Calibration in Multi-Distribution Learning
On Calibration in Multi-Distribution Learning
Rajeev Verma
Volker Fischer
Eric Nalisnick
79
1
0
18 Dec 2024
Labels in Extremes: How Well Calibrated are Extreme Multi-label
  Classifiers?
Labels in Extremes: How Well Calibrated are Extreme Multi-label Classifiers?
Nasib Ullah
Erik Schultheis
Jinbin Zhang
Rohit Babbar
45
0
0
06 Nov 2024
Confidence Calibration of Classifiers with Many Classes
Confidence Calibration of Classifiers with Many Classes
Adrien LeCoz
Stéphane Herbin
Faouzi Adjed
UQCV
82
1
0
05 Nov 2024
Calibrating Expressions of Certainty
Calibrating Expressions of Certainty
Peiqi Wang
Barbara D. Lam
Yingcheng Liu
Ameneh Asgari-Targhi
Yikang Shen
W. Wells
Tina Kapur
Polina Golland
118
2
0
06 Oct 2024
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty
  Learning
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning
Song Wang
Zhongdao Wang
Jiawei Yu
Wentong Li
Bailan Feng
Junbo Chen
Jianke Zhu
UQCV
84
3
0
26 Sep 2024
Mind the Uncertainty in Human Disagreement: Evaluating Discrepancies
  between Model Predictions and Human Responses in VQA
Mind the Uncertainty in Human Disagreement: Evaluating Discrepancies between Model Predictions and Human Responses in VQA
Jian Lan
Diego Frassinelli
Barbara Plank
47
1
0
17 Sep 2024
Crowd-Calibrator: Can Annotator Disagreement Inform Calibration in
  Subjective Tasks?
Crowd-Calibrator: Can Annotator Disagreement Inform Calibration in Subjective Tasks?
Urja Khurana
Eric T. Nalisnick
Antske Fokkens
Swabha Swayamdipta
107
4
0
26 Aug 2024
Evaluating Posterior Probabilities: Decision Theory, Proper Scoring
  Rules, and Calibration
Evaluating Posterior Probabilities: Decision Theory, Proper Scoring Rules, and Calibration
Luciana Ferrer
Daniel Ramos
UQCV
61
4
0
05 Aug 2024
Superior Scoring Rules for Probabilistic Evaluation of Single-Label
  Multi-Class Classification Tasks
Superior Scoring Rules for Probabilistic Evaluation of Single-Label Multi-Class Classification Tasks
Rouhollah Ahmadian
Mehdi Ghatee
Johan Wahlström
82
2
0
25 Jul 2024
Robust quantum dots charge autotuning using neural networks uncertainty
Robust quantum dots charge autotuning using neural networks uncertainty
Victor Yon
Bastien Galaup
Claude Rohrbacher
J. Rivard
Clément Godfrin
...
Louis Gaudreau
Eva Dupont-Ferrier
Y. Beilliard
R. Melko
Dominique Drouin
107
1
0
07 Jun 2024
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
M. Chidambaram
Rong Ge
133
2
0
06 Jun 2024
Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech
  Foundation Models
Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models
Yuchen Hu
Chen Chen
Chao-Han Huck Yang
Chengwei Qin
Pin-Yu Chen
Chng Eng Siong
Chao Zhang
VLM
71
4
0
23 May 2024
Calibration of Continual Learning Models
Calibration of Continual Learning Models
Lanpei Li
Elia Piccoli
Andrea Cossu
Davide Bacciu
Vincenzo Lomonaco
CLL
115
2
0
11 Apr 2024
A Short Survey on Importance Weighting for Machine Learning
A Short Survey on Importance Weighting for Machine Learning
Masanari Kimura
H. Hino
90
8
0
15 Mar 2024
Predict the Next Word: Humans exhibit uncertainty in this task and
  language models _____
Predict the Next Word: Humans exhibit uncertainty in this task and language models _____
Evgenia Ilia
Wilker Aziz
60
2
0
27 Feb 2024
Interpreting Predictive Probabilities: Model Confidence or Human Label
  Variation?
Interpreting Predictive Probabilities: Model Confidence or Human Label Variation?
Joris Baan
Raquel Fernández
Barbara Plank
Wilker Aziz
110
11
0
25 Feb 2024
How Flawed Is ECE? An Analysis via Logit Smoothing
How Flawed Is ECE? An Analysis via Logit Smoothing
Muthu Chidambaram
Holden Lee
Colin McSwiggen
Semon Rezchikov
UQCV
62
3
0
15 Feb 2024
AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
Clara Punzi
Roberto Pellungrini
Mattia Setzu
F. Giannotti
D. Pedreschi
67
6
0
09 Feb 2024
Automated Clinical Coding for Outpatient Departments
Automated Clinical Coding for Outpatient Departments
Viktor Schlegel
Abhinav Ramesh Kashyap
Thanh-Tung Nguyen
Tsung-Han Yang
Vijay Prakash Dwivedi
Wei-Hsian Yin
Jeng Wei
Stefan Winkle
81
1
0
21 Dec 2023
Consistent and Asymptotically Unbiased Estimation of Proper Calibration
  Errors
Consistent and Asymptotically Unbiased Estimation of Proper Calibration Errors
Teodora Popordanoska
Sebastian G. Gruber
A. Tiulpin
Florian Buettner
Matthew B. Blaschko
155
5
0
14 Dec 2023
Estimating calibration error under label shift without labels
Estimating calibration error under label shift without labels
Teodora Popordanoska
Gorjan Radevski
Tinne Tuytelaars
Matthew B. Blaschko
34
1
0
14 Dec 2023
Beyond Classification: Definition and Density-based Estimation of
  Calibration in Object Detection
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Teodora Popordanoska
A. Tiulpin
Matthew B. Blaschko
113
8
0
11 Dec 2023
Classifier Calibration with ROC-Regularized Isotonic Regression
Classifier Calibration with ROC-Regularized Isotonic Regression
Eugene Berta
Francis Bach
Michael I. Jordan
35
9
0
21 Nov 2023
Calibration by Distribution Matching: Trainable Kernel Calibration
  Metrics
Calibration by Distribution Matching: Trainable Kernel Calibration Metrics
Charles Marx
Sofian Zalouk
Stefano Ermon
91
10
0
31 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDLAAML
103
20
0
28 Sep 2023
Understanding Calibration of Deep Neural Networks for Medical Image
  Classification
Understanding Calibration of Deep Neural Networks for Medical Image Classification
A. Sambyal
Usma Niyaz
N. C. Krishnan
Deepti R. Bathula
42
7
0
22 Sep 2023
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Jarosław Błasiok
Preetum Nakkiran
UQCV
110
26
0
21 Sep 2023
A Benchmark Study on Calibration
A Benchmark Study on Calibration
Linwei Tao
Younan Zhu
Haolan Guo
Minjing Dong
Chang Xu
93
9
0
23 Aug 2023
Through the Lens of Core Competency: Survey on Evaluation of Large
  Language Models
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
Ziyu Zhuang
Qiguang Chen
Longxuan Ma
Mingda Li
Yi Han
Yushan Qian
Haopeng Bai
Zixian Feng
Weinan Zhang
Ting Liu
ELM
75
13
0
15 Aug 2023
Calibration in Deep Learning: A Survey of the State-of-the-Art
Calibration in Deep Learning: A Survey of the State-of-the-Art
Cheng Wang
UQCV
118
43
0
02 Aug 2023
Towards Reliable Rare Category Analysis on Graphs via Individual
  Calibration
Towards Reliable Rare Category Analysis on Graphs via Individual Calibration
Longfeng Wu
Bowen Lei
Dongkuan Xu
Dawei Zhou
UQCVCML
77
9
0
19 Jul 2023
Set Learning for Accurate and Calibrated Models
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
67
2
0
05 Jul 2023
TCE: A Test-Based Approach to Measuring Calibration Error
TCE: A Test-Based Approach to Measuring Calibration Error
Takuo Matsubara
Niek Tax
Richard Mudd
Ido Guy
97
4
0
25 Jun 2023
Beyond Probability Partitions: Calibrating Neural Networks with Semantic
  Aware Grouping
Beyond Probability Partitions: Calibrating Neural Networks with Semantic Aware Grouping
Jia-Qi Yang
De-Chuan Zhan
Le Gan
UQCV
56
5
0
08 Jun 2023
Minimum-Risk Recalibration of Classifiers
Minimum-Risk Recalibration of Classifiers
Zeyu Sun
Dogyoon Song
Alfred Hero
90
7
0
18 May 2023
Document Understanding Dataset and Evaluation (DUDE)
Document Understanding Dataset and Evaluation (DUDE)
Jordy Van Landeghem
Rubèn Pérez Tito
Łukasz Borchmann
Michal Pietruszka
Pawel Józiak
...
Bertrand Ackaert
Ernest Valveny
Matthew Blaschko
Sien Moens
Tomasz Stanislawek
VGen
93
66
0
15 May 2023
Measuring Classification Decision Certainty and Doubt
Measuring Classification Decision Certainty and Doubt
Alexander M. Berenbeim
Iain J. Cruickshank
Susmit Jha
Robert H. Thomson
Nathaniel D. Bastian
UQCV
23
4
0
25 Mar 2023
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Wenbo Hu
Xin Sun
Qiang liu
Wenbo Hu
Shu Wu
126
1
0
23 Mar 2023
Uncertainty quantification in neural network classifiers -- a local
  linear approach
Uncertainty quantification in neural network classifiers -- a local linear approach
Magnus Malmström
Isaac Skog
Daniel Axehill
Fredrik K. Gustafsson
UQCV
60
1
0
10 Mar 2023
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
91
41
0
06 Mar 2023
123
Next