ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06977
  4. Cited By
Evaluating model calibration in classification

Evaluating model calibration in classification

19 February 2019
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Evaluating model calibration in classification"

27 / 127 papers shown
Title
Should Ensemble Members Be Calibrated?
Should Ensemble Members Be Calibrated?
Xixin Wu
Mark Gales
UQCV
51
12
0
13 Jan 2021
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
136
64
0
19 Oct 2020
A Generic Methodology for the Statistically Uniform & Comparable
  Evaluation of Automated Trading Platform Components
A Generic Methodology for the Statistically Uniform & Comparable Evaluation of Automated Trading Platform Components
A. Sokolovsky
Luca Arnaboldi
38
3
0
21 Sep 2020
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
  in Medical Domain
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions in Medical Domain
Takahiro Mimori
Keiko Sasada
H. Matsui
Issei Sato
UQCV
80
7
0
03 Jul 2020
Multi-Class Uncertainty Calibration via Mutual Information
  Maximization-based Binning
Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning
Kanil Patel
William H. Beluch
Binh Yang
Michael Pfeiffer
Dan Zhang
UQCV
113
34
0
23 Jun 2020
Calibration of Neural Networks using Splines
Calibration of Neural Networks using Splines
Kartik Gupta
Amir M. Rahimi
Thalaiyasingam Ajanthan
Thomas Mensink
C. Sminchisescu
Leonid Sigal
97
109
0
23 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDLUQCV
121
18
0
20 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
117
83
0
18 Jun 2020
Classification with Valid and Adaptive Coverage
Classification with Valid and Adaptive Coverage
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
397
329
0
03 Jun 2020
Plots of the cumulative differences between observed and expected values
  of ordered Bernoulli variates
Plots of the cumulative differences between observed and expected values of ordered Bernoulli variates
M. Tygert
UQCV
20
4
0
03 Jun 2020
Calibrating Structured Output Predictors for Natural Language Processing
Calibrating Structured Output Predictors for Natural Language Processing
Abhyuday N. Jagannatha
Hong-ye Yu
103
28
0
09 Apr 2020
A Unified View of Label Shift Estimation
A Unified View of Label Shift Estimation
Saurabh Garg
Yifan Wu
Sivaraman Balakrishnan
Zachary Chase Lipton
99
146
0
17 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
106
227
0
16 Mar 2020
Quantile Regularization: Towards Implicit Calibration of Regression
  Models
Quantile Regularization: Towards Implicit Calibration of Regression Models
Saiteja Utpala
Piyush Rai
UQCV
53
8
0
28 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
94
467
0
21 Feb 2020
Active Bayesian Assessment for Black-Box Classifiers
Active Bayesian Assessment for Black-Box Classifiers
Disi Ji
Robert L Logan IV
Padhraic Smyth
M. Steyvers
UQCV
41
17
0
16 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCVFedML
96
320
0
15 Feb 2020
A multiple testing framework for diagnostic accuracy studies with
  co-primary endpoints
A multiple testing framework for diagnostic accuracy studies with co-primary endpoints
Max Westphal
A. Zapf
W. Brannath
27
5
0
08 Nov 2019
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
103
384
0
28 Oct 2019
Calibration tests in multi-class classification: A unifying framework
Calibration tests in multi-class classification: A unifying framework
David Widmann
Fredrik Lindsten
Dave Zachariah
97
94
0
24 Oct 2019
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
192
359
0
23 Sep 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
118
82
0
12 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OODUQCVBDL
80
301
0
04 Jun 2019
Are Graph Neural Networks Miscalibrated?
Are Graph Neural Networks Miscalibrated?
Leonardo Teixeira
B. Jalaeian
Bruno Ribeiro
AI4CE
75
22
0
07 May 2019
Measuring Calibration in Deep Learning
Measuring Calibration in Deep Learning
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
96
492
0
02 Apr 2019
Revisiting the Evaluation of Uncertainty Estimation and Its Application
  to Explore Model Complexity-Uncertainty Trade-Off
Revisiting the Evaluation of Uncertainty Estimation and Its Application to Explore Model Complexity-Uncertainty Trade-Off
Yukun Ding
Jinglan Liu
Jinjun Xiong
Yiyu Shi
49
13
0
05 Mar 2019
Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at
  Label Shift Adaptation
Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation
Amr M. Alexandari
A. Kundaje
Avanti Shrikumar
52
9
0
21 Jan 2019
Previous
123