ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.08401
  4. Cited By
Learning about an exponential amount of conditional distributions

Learning about an exponential amount of conditional distributions

22 February 2019
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David Lopez-Paz
    BDLSSL
ArXiv (abs)PDFHTML

Papers citing "Learning about an exponential amount of conditional distributions"

23 / 23 papers shown
Title
Towards Universal Neural Inference
Towards Universal Neural Inference
Shreyas Bhat Brahmavar
Yang Li
Junier B. Oliva
OOD
124
0
0
12 Aug 2025
Distribution Guided Active Feature Acquisition
Distribution Guided Active Feature Acquisition
Yang Li
Junier Oliva
258
1
0
04 Oct 2024
Adapting to Shifting Correlations with Unlabeled Data Calibration
Adapting to Shifting Correlations with Unlabeled Data CalibrationEuropean Conference on Computer Vision (ECCV), 2024
Minh Le Nguyen
Alan Q. Wang
Heejong Kim
Mert R. Sabuncu
OOD
164
2
0
09 Sep 2024
Knockout: A simple way to handle missing inputs
Knockout: A simple way to handle missing inputs
Minh Le Nguyen
Batuhan K. Karaman
Heejong Kim
Alan Q. Wang
Fengbei Liu
M. Sabuncu
OODUQCV
298
3
0
30 May 2024
A Comparative Study of Methods for Estimating Conditional Shapley Values
  and When to Use Them
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use ThemData mining and knowledge discovery (DMKD), 2023
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
FAtt
186
22
0
16 May 2023
Acquisition Conditioned Oracle for Nongreedy Active Feature Acquisition
Acquisition Conditioned Oracle for Nongreedy Active Feature AcquisitionInternational Conference on Machine Learning (ICML), 2023
M. Valancius
M. Lennon
Junier Oliva
135
5
0
27 Feb 2023
Model Joins: Enabling Analytics Over Joins of Absent Big Tables
Model Joins: Enabling Analytics Over Joins of Absent Big Tables
A. Shanghooshabad
Peter Triantafillou
84
0
0
21 Jun 2022
CP2: Copy-Paste Contrastive Pretraining for Semantic Segmentation
CP2: Copy-Paste Contrastive Pretraining for Semantic SegmentationEuropean Conference on Computer Vision (ECCV), 2022
Feng Wang
Huiyu Wang
Chen Wei
Alan Yuille
Wei Shen
SSLVLM
232
37
0
22 Mar 2022
Posterior Matching for Arbitrary Conditioning
Posterior Matching for Arbitrary ConditioningNeural Information Processing Systems (NeurIPS), 2022
R. Strauss
Junier B. Oliva
CMLBDL
198
7
0
28 Jan 2022
Arbitrary Marginal Neural Ratio Estimation for Simulation-based
  Inference
Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference
Sacha Lewin
Gilles Louppe
238
8
0
01 Oct 2021
Partially Observed Exchangeable Modeling
Partially Observed Exchangeable ModelingInternational Conference on Machine Learning (ICML), 2021
Yang Li
Junier B. Oliva
98
5
0
11 Feb 2021
Arbitrary Conditional Distributions with Energy
Arbitrary Conditional Distributions with EnergyNeural Information Processing Systems (NeurIPS), 2021
R. Strauss
Junier B. Oliva
159
21
0
08 Feb 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model ExplanationJournal of machine learning research (JMLR), 2020
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
349
299
0
21 Nov 2020
Unsupervised Learning of Dense Visual Representations
Unsupervised Learning of Dense Visual Representations
Pedro H. O. Pinheiro
Amjad Almahairi
Ryan Y. Benmalek
Florian Golemo
Aaron Courville
SSLMDE
229
210
0
11 Nov 2020
Adversarially-learned Inference via an Ensemble of Discrete Undirected
  Graphical Models
Adversarially-learned Inference via an Ensemble of Discrete Undirected Graphical ModelsNeural Information Processing Systems (NeurIPS), 2020
Adarsh K. Jeewajee
L. Kaelbling
BDL
193
1
0
09 Jul 2020
Generalized Adversarially Learned Inference
Generalized Adversarially Learned InferenceAAAI Conference on Artificial Intelligence (AAAI), 2020
Yatin Dandi
Homanga Bharadhwaj
Abhishek Kumar
Piyush Rai
GAN
128
8
0
15 Jun 2020
Conditional Sampling with Monotone GANs: from Generative Models to
  Likelihood-Free Inference
Conditional Sampling with Monotone GANs: from Generative Models to Likelihood-Free Inference
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
OTGAN
232
32
0
11 Jun 2020
Low Distortion Block-Resampling with Spatially Stochastic Networks
Low Distortion Block-Resampling with Spatially Stochastic Networks
S. J. Hong
Martín Arjovsky
Darryl Barnhart
Ian Thompson
122
8
0
09 Jun 2020
Shapley explainability on the data manifold
Shapley explainability on the data manifoldInternational Conference on Learning Representations (ICLR), 2020
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAttTDI
365
114
0
01 Jun 2020
Composing Normalizing Flows for Inverse Problems
Composing Normalizing Flows for Inverse ProblemsInternational Conference on Machine Learning (ICML), 2020
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
257
55
0
26 Feb 2020
Masking schemes for universal marginalisers
Masking schemes for universal marginalisers
Divya Gautam
Maria Lomeli
Kostis Gourgoulias
D. Thompson
Saurabh Johri
173
1
0
16 Jan 2020
Universal Marginaliser for Deep Amortised Inference for Probabilistic
  Programs
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
R. Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
A. Buchard
Maria Lomeli
Yura N. Perov
Saurabh Johri
UQCV
145
0
0
16 Oct 2019
Flow Models for Arbitrary Conditional Likelihoods
Flow Models for Arbitrary Conditional LikelihoodsInternational Conference on Machine Learning (ICML), 2019
Yongqian Li
Shoaib Akbar
Junier B. Oliva
OODAI4CE
163
42
0
13 Sep 2019
1