ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.09754
  4. Cited By
Function Space Particle Optimization for Bayesian Neural Networks

Function Space Particle Optimization for Bayesian Neural Networks

26 February 2019
Ziyu Wang
Tongzheng Ren
Jun Zhu
Bo Zhang
    BDL
ArXivPDFHTML

Papers citing "Function Space Particle Optimization for Bayesian Neural Networks"

9 / 9 papers shown
Title
Scientific Machine Learning Seismology
Scientific Machine Learning Seismology
Tomohisa Okazaki
PINN
AI4CE
48
0
0
27 Sep 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
50
3
0
31 May 2024
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
38
1
0
12 Jul 2023
MARS: Meta-Learning as Score Matching in the Function Space
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
30
4
0
24 Oct 2022
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
51
93
0
22 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
38
100
0
15 Jun 2020
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1