Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.10214
Cited By
Implicit Kernel Learning
26 February 2019
Chun-Liang Li
Wei-Cheng Chang
Youssef Mroueh
Yiming Yang
Barnabás Póczós
VLM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Implicit Kernel Learning"
25 / 25 papers shown
Title
CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
Kuntian Zhang
Simin Yu
Yaoshu Wang
Makoto Onizuka
Chuan Xiao
GAN
96
0
0
08 Apr 2025
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
145
7
0
30 Jun 2024
On the Laplace Approximation as Model Selection Criterion for Gaussian Processes
Andreas Besginow
J. D. Hüwel
Thomas Pawellek
Christian Beecks
Markus Lange-Hegermann
35
0
0
14 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
55
0
0
07 Mar 2024
Wasserstein Distortion: Unifying Fidelity and Realism
Yang Qiu
Aaron B. Wagner
Johannes Ballé
Lucas Theis
83
6
0
05 Oct 2023
Kernel Biclustering algorithm in Hilbert Spaces
Marcos Matabuena
J. Vidal
Oscar Hernan Madrid Padilla
Dino Sejdinovic
43
2
0
07 Aug 2022
On Learning the Transformer Kernel
Sankalan Pal Chowdhury
Adamos Solomou
Kumar Avinava Dubey
Mrinmaya Sachan
ViT
131
14
0
15 Oct 2021
Diverse Sample Generation: Pushing the Limit of Generative Data-free Quantization
Haotong Qin
Yifu Ding
Xiangguo Zhang
Jiakai Wang
Xianglong Liu
Jiwen Lu
DiffM
MQ
56
57
0
01 Sep 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Yufan Zhou
Changyou Chen
Jinhui Xu
39
2
0
10 May 2021
MetaKernel: Learning Variational Random Features with Limited Labels
Yingjun Du
Haoliang Sun
Xiantong Zhen
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
VLM
BDL
37
5
0
08 May 2021
Kernel-Based Models for Influence Maximization on Graphs based on Gaussian Process Variance Minimization
S. Cuomo
W. Erb
G. Santin
70
3
0
02 Mar 2021
Learning with Density Matrices and Random Features
Fabio A. González
Joseph A. Gallego-Mejia
Santiago Toledo-Cortés
Vladimir Vargas-Calderón
47
29
0
08 Feb 2021
Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS
P. A. Sreekar
Ujjwal Tiwari
A. Namboodiri
34
2
0
17 Nov 2020
Learning Manifold Implicitly via Explicit Heat-Kernel Learning
Yufan Zhou
Changyou Chen
Jinhui Xu
71
8
0
05 Oct 2020
End-to-end Kernel Learning via Generative Random Fourier Features
Kun Fang
Fanghui Liu
Xiaolin Huang
Jie Yang
36
9
0
10 Sep 2020
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffM
BDL
120
5
0
06 Jul 2020
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
Implicit Kernel Attention
Kyungwoo Song
Yohan Jung
Dongjun Kim
Il-Chul Moon
76
16
0
11 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
124
176
0
23 Apr 2020
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative Modeling
Yufan Zhou
Changyou Chen
Jinhui Xu
31
2
0
02 Dec 2019
A Mean-Field Theory for Kernel Alignment with Random Features in Generative and Discriminative Models
M. B. Khuzani
Liyue Shen
Shahin Shahrampour
Lei Xing
50
1
0
25 Sep 2019
A Characteristic Function Approach to Deep Implicit Generative Modeling
Abdul Fatir Ansari
Jonathan Scarlett
Harold Soh
VLM
GAN
53
40
0
16 Sep 2019
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu
Lei Shi
Xiaolin Huang
Jie Yang
Johan A. K. Suykens
46
4
0
26 Sep 2018
Learning Data-adaptive Nonparametric Kernels
Fanghui Liu
Xiaolin Huang
Chen Gong
Jie Yang
Li Li
81
18
0
31 Aug 2018
Generative Ratio Matching Networks
Akash Srivastava
Kai Xu
Michael U. Gutmann
Charles Sutton
GAN
58
12
0
31 May 2018
1