ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10214
  4. Cited By
Implicit Kernel Learning

Implicit Kernel Learning

26 February 2019
Chun-Liang Li
Wei-Cheng Chang
Youssef Mroueh
Yiming Yang
Barnabás Póczós
    VLM
ArXiv (abs)PDFHTML

Papers citing "Implicit Kernel Learning"

25 / 25 papers shown
Title
CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
CKGAN: Training Generative Adversarial Networks Using Characteristic Kernel Integral Probability Metrics
Kuntian Zhang
Simin Yu
Yaoshu Wang
Makoto Onizuka
Chuan Xiao
GAN
96
0
0
08 Apr 2025
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
145
7
0
30 Jun 2024
On the Laplace Approximation as Model Selection Criterion for Gaussian
  Processes
On the Laplace Approximation as Model Selection Criterion for Gaussian Processes
Andreas Besginow
J. D. Hüwel
Thomas Pawellek
Christian Beecks
Markus Lange-Hegermann
35
0
0
14 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
55
0
0
07 Mar 2024
Wasserstein Distortion: Unifying Fidelity and Realism
Wasserstein Distortion: Unifying Fidelity and Realism
Yang Qiu
Aaron B. Wagner
Johannes Ballé
Lucas Theis
83
6
0
05 Oct 2023
Kernel Biclustering algorithm in Hilbert Spaces
Kernel Biclustering algorithm in Hilbert Spaces
Marcos Matabuena
J. Vidal
Oscar Hernan Madrid Padilla
Dino Sejdinovic
43
2
0
07 Aug 2022
On Learning the Transformer Kernel
On Learning the Transformer Kernel
Sankalan Pal Chowdhury
Adamos Solomou
Kumar Avinava Dubey
Mrinmaya Sachan
ViT
131
14
0
15 Oct 2021
Diverse Sample Generation: Pushing the Limit of Generative Data-free
  Quantization
Diverse Sample Generation: Pushing the Limit of Generative Data-free Quantization
Haotong Qin
Yifu Ding
Xiangguo Zhang
Jiakai Wang
Xianglong Liu
Jiwen Lu
DiffMMQ
56
57
0
01 Sep 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
  Kernels
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Yufan Zhou
Changyou Chen
Jinhui Xu
39
2
0
10 May 2021
MetaKernel: Learning Variational Random Features with Limited Labels
MetaKernel: Learning Variational Random Features with Limited Labels
Yingjun Du
Haoliang Sun
Xiantong Zhen
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
VLMBDL
37
5
0
08 May 2021
Kernel-Based Models for Influence Maximization on Graphs based on
  Gaussian Process Variance Minimization
Kernel-Based Models for Influence Maximization on Graphs based on Gaussian Process Variance Minimization
S. Cuomo
W. Erb
G. Santin
70
3
0
02 Mar 2021
Learning with Density Matrices and Random Features
Learning with Density Matrices and Random Features
Fabio A. González
Joseph A. Gallego-Mejia
Santiago Toledo-Cortés
Vladimir Vargas-Calderón
60
29
0
08 Feb 2021
Reducing the Variance of Variational Estimates of Mutual Information by
  Limiting the Critic's Hypothesis Space to RKHS
Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS
P. A. Sreekar
Ujjwal Tiwari
A. Namboodiri
36
2
0
17 Nov 2020
Learning Manifold Implicitly via Explicit Heat-Kernel Learning
Learning Manifold Implicitly via Explicit Heat-Kernel Learning
Yufan Zhou
Changyou Chen
Jinhui Xu
73
8
0
05 Oct 2020
End-to-end Kernel Learning via Generative Random Fourier Features
End-to-end Kernel Learning via Generative Random Fourier Features
Kun Fang
Fanghui Liu
Xiaolin Huang
Jie Yang
36
9
0
10 Sep 2020
Kernel Stein Generative Modeling
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffMBDL
120
5
0
06 Jul 2020
Learning to Learn Kernels with Variational Random Features
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
Implicit Kernel Attention
Implicit Kernel Attention
Kyungwoo Song
Yohan Jung
Dongjun Kim
Il-Chul Moon
76
16
0
11 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
126
176
0
23 Apr 2020
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative
  Modeling
KernelNet: A Data-Dependent Kernel Parameterization for Deep Generative Modeling
Yufan Zhou
Changyou Chen
Jinhui Xu
33
2
0
02 Dec 2019
A Mean-Field Theory for Kernel Alignment with Random Features in
  Generative and Discriminative Models
A Mean-Field Theory for Kernel Alignment with Random Features in Generative and Discriminative Models
M. B. Khuzani
Liyue Shen
Shahin Shahrampour
Lei Xing
50
1
0
25 Sep 2019
A Characteristic Function Approach to Deep Implicit Generative Modeling
A Characteristic Function Approach to Deep Implicit Generative Modeling
Abdul Fatir Ansari
Jonathan Scarlett
Harold Soh
VLMGAN
53
40
0
16 Sep 2019
Generalization Properties of hyper-RKHS and its Applications
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu
Lei Shi
Xiaolin Huang
Jie Yang
Johan A. K. Suykens
46
4
0
26 Sep 2018
Learning Data-adaptive Nonparametric Kernels
Learning Data-adaptive Nonparametric Kernels
Fanghui Liu
Xiaolin Huang
Chen Gong
Jie Yang
Li Li
81
18
0
31 Aug 2018
Generative Ratio Matching Networks
Generative Ratio Matching Networks
Akash Srivastava
Kai Xu
Michael U. Gutmann
Charles Sutton
GAN
58
12
0
31 May 2018
1