Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1902.10298
Cited By
v1
v2
v3 (latest)
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs
International Joint Conference on Artificial Intelligence (IJCAI), 2019
27 February 2019
A. Gholami
Kurt Keutzer
George Biros
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs"
50 / 109 papers shown
Title
Quantized Convolutional Neural Networks Through the Lens of Partial Differential Equations
Research in the Mathematical Sciences (Res. Math. Sci.), 2021
Ido Ben-Yair
Gil Ben Shalom
Moshe Eliasof
Eran Treister
MQ
221
5
0
31 Aug 2021
Data-driven reduced order modeling of environmental hydrodynamics using deep autoencoders and neural ODEs
S. Dutta
Peter Rivera-Casillas
Orie M. Cecil
Matthew W. Farthing
E. Perracchione
M. Putti
AI4CE
132
9
0
06 Jul 2021
Learning ODEs via Diffeomorphisms for Fast and Robust Integration
Weiming Zhi
Tin Lai
Lionel Ott
Edwin V. Bonilla
Fabio Ramos
OOD
98
4
0
04 Jul 2021
Closed-form Continuous-time Neural Models
Nature Machine Intelligence (Nat. Mach. Intell.), 2021
Ramin Hasani
Mathias Lechner
Alexander Amini
Lucas Liebenwein
Aaron Ray
Max Tschaikowski
G. Teschl
Daniela Rus
PINN
AI4TS
232
129
0
25 Jun 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
205
55
0
23 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
Neural Information Processing Systems (NeurIPS), 2021
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
196
17
0
21 Jun 2021
Causal Navigation by Continuous-time Neural Networks
Charles J. Vorbach
Ramin Hasani
Alexander Amini
Mathias Lechner
Daniela Rus
179
54
0
15 Jun 2021
Incorporating NODE with Pre-trained Neural Differential Operator for Learning Dynamics
Shiqi Gong
Qi Meng
Yue Wang
Lijun Wu
Wei Chen
Zhi-Ming Ma
Tie-Yan Liu
223
4
0
08 Jun 2021
Learning Runge-Kutta Integration Schemes for ODE Simulation and Identification
Said Ouala
L. Debreu
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
117
5
0
11 May 2021
Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal Solver Heuristics
International Conference on Machine Learning (ICML), 2021
Avik Pal
Yingbo Ma
Viral B. Shah
Chris Rackauckas
161
41
0
09 May 2021
Neural Ordinary Differential Equations for Data-Driven Reduced Order Modeling of Environmental Hydrodynamics
S. Dutta
Peter Rivera-Casillas
Matthew W. Farthing
AI4CE
129
14
0
22 Apr 2021
Stiff Neural Ordinary Differential Equations
Chaos (Chaos), 2021
Suyong Kim
Weiqi Ji
Sili Deng
Yingbo Ma
Chris Rackauckas
AI4CE
169
177
0
29 Mar 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
AAAI Conference on Artificial Intelligence (AAAI), 2021
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
322
107
0
23 Mar 2021
Meta-Solver for Neural Ordinary Differential Equations
Julia Gusak
A. Katrutsa
Talgat Daulbaev
A. Cichocki
Ivan Oseledets
158
2
0
15 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
206
25
0
04 Mar 2021
Spline parameterization of neural network controls for deep learning
Stefanie Günther
Will Pazner
Dongping Qi
90
4
0
27 Feb 2021
Learning orbital dynamics of binary black hole systems from gravitational wave measurements
Physical Review Research (Phys. Rev. Res.), 2021
B. Keith
Akshay Khadse
Scott E. Field
126
12
0
25 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Neural Information Processing Systems (NeurIPS), 2021
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
138
27
0
19 Feb 2021
Momentum Residual Neural Networks
International Conference on Machine Learning (ICML), 2021
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
236
63
0
15 Feb 2021
Accelerating ODE-Based Neural Networks on Low-Cost FPGAs
IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPS), 2020
Hirohisa Watanabe
Hiroki Matsutani
201
5
0
31 Dec 2020
Neural Closure Models for Dynamical Systems
Proceedings of the Royal Society A (Proc. R. Soc. A), 2020
Abhinav Gupta
Pierre FJ Lermusiaux
AI4CE
313
48
0
27 Dec 2020
Delay Differential Neural Networks
International Conference on Machine Learning Technologies (ICMLT), 2020
Srinivas Anumasa
P. K. Srijith
117
6
0
12 Dec 2020
Faster Policy Learning with Continuous-Time Gradients
Conference on Learning for Dynamics & Control (L4DC), 2020
Samuel K. Ainsworth
Kendall Lowrey
John Thickstun
Zaïd Harchaoui
S. Srinivasa
233
13
0
12 Dec 2020
Parameterized Neural Ordinary Differential Equations: Applications to Computational Physics Problems
Proceedings of the Royal Society A (Proc. R. Soc. A), 2020
Kookjin Lee
E. Parish
183
82
0
28 Oct 2020
Differentiable Implicit Layers
Andreas Look
Simona Doneva
M. Kandemir
Rainer Gemulla
Jan Peters
198
10
0
14 Oct 2020
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
155
26
0
07 Oct 2020
A Practical Layer-Parallel Training Algorithm for Residual Networks
Qi Sun
Hexin Dong
Zewei Chen
Weizhen Dian
Jiacheng Sun
Yitong Sun
Zhenguo Li
Bin Dong
ODL
233
2
0
03 Sep 2020
Continuous-in-Depth Neural Networks
A. Queiruga
N. Benjamin Erichson
D. Taylor
Michael W. Mahoney
249
54
0
05 Aug 2020
Train Like a (Var)Pro: Efficient Training of Neural Networks with Variable Projection
SIAM Journal on Mathematics of Data Science (SIMODS), 2020
Elizabeth Newman
Lars Ruthotto
Joseph L. Hart
B. V. B. Waanders
AAML
235
24
0
26 Jul 2020
MRI Image Reconstruction via Learning Optimization Using Neural ODEs
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020
Eric Z. Chen
Terrence Chen
Shanhui Sun
165
26
0
24 Jun 2020
A Shooting Formulation of Deep Learning
François-Xavier Vialard
Roland Kwitt
Susan Wei
Marc Niethammer
153
15
0
18 Jun 2020
On Second Order Behaviour in Augmented Neural ODEs
Neural Information Processing Systems (NeurIPS), 2020
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lio
224
105
0
12 Jun 2020
Liquid Time-constant Networks
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
Radu Grosu
AI4TS
AI4CE
228
313
0
08 Jun 2020
Learning Long-Term Dependencies in Irregularly-Sampled Time Series
Mathias Lechner
Ramin Hasani
AI4TS
383
156
0
08 Jun 2020
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
192
47
0
05 Jun 2020
Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE
International Conference on Machine Learning (ICML), 2020
Juntang Zhuang
Nicha Dvornek
Xiaoxiao Li
S. Tatikonda
X. Papademetris
James Duncan
BDL
211
121
0
03 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
International Conference on Machine Learning (ICML), 2020
Jonas Köhler
Leon Klein
Frank Noé
DRL
280
309
0
03 Jun 2020
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport
AAAI Conference on Artificial Intelligence (AAAI), 2020
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
OT
469
189
0
29 May 2020
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
241
59
0
27 May 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
409
599
0
18 May 2020
Neural Differential Equations for Single Image Super-resolution
International Conference on Learning Representations (ICLR), 2020
Teven Le Scao
123
2
0
02 May 2020
Towards Understanding Normalization in Neural ODEs
International Conference on Learning Representations (ICLR), 2020
Julia Gusak
L. Markeeva
Talgat Daulbaev
A. Katrutsa
A. Cichocki
Ivan Oseledets
209
19
0
20 Apr 2020
Bayesian differential programming for robust systems identification under uncertainty
Proceedings of the Royal Society A (Proc. R. Soc. A), 2020
Jianlong Wu
Mohamed Aziz Bhouri
P. Perdikaris
OOD
256
36
0
15 Apr 2020
Real-time Classification from Short Event-Camera Streams using Input-filtering Neural ODEs
Giorgio Giannone
Asha Anoosheh
A. Quaglino
P. DÓro
Marco Gallieri
Jonathan Masci
AI4TS
120
6
0
07 Apr 2020
Deep connections between learning from limited labels & physical parameter estimation -- inspiration for regularization
Bas Peters
AI4CE
127
0
0
17 Mar 2020
Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs
Talgat Daulbaev
A. Katrutsa
L. Markeeva
Julia Gusak
A. Cichocki
Ivan Oseledets
136
8
0
11 Mar 2020
Stochasticity in Neural ODEs: An Empirical Study
International Conference on Learning Representations (ICLR), 2020
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
BDL
171
21
0
22 Feb 2020
Stochastic Normalizing Flows
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
BDL
125
1
0
21 Feb 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
350
688
0
13 Jan 2020
Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU
International Conference on Learning Representations (ICLR), 2020
Patrick Kidger
Terry Lyons
165
94
0
03 Jan 2020
Previous
1
2
3
Next