ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02958
  4. Cited By
Reparameterizing Distributions on Lie Groups

Reparameterizing Distributions on Lie Groups

7 March 2019
Luca Falorsi
P. D. Haan
Tim R. Davidson
Patrick Forré
    BDL
    DRL
ArXivPDFHTML

Papers citing "Reparameterizing Distributions on Lie Groups"

23 / 23 papers shown
Title
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Yuchen Zhu
Tianrong Chen
Lingkai Kong
Evangelos A. Theodorou
Molei Tao
DiffM
48
5
0
25 May 2024
A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
E. Cui
18
0
0
20 May 2024
Latent Space Symmetry Discovery
Latent Space Symmetry Discovery
Jianke Yang
Nima Dehmamy
Robin Walters
Rose Yu
40
12
0
29 Sep 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
44
27
0
26 Jan 2023
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
83
24
0
01 Sep 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
23
28
0
19 Oct 2021
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
27
57
0
18 Aug 2021
Implicit-PDF: Non-Parametric Representation of Probability Distributions
  on the Rotation Manifold
Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
Kieran A. Murphy
Carlos Esteves
Varun Jampani
Srikumar Ramalingam
A. Makadia
20
76
0
10 Jun 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
  Estimation
Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose Estimation
Haowen Deng
Mai Bui
Nassir Navab
Leonidas J. Guibas
Slobodan Ilic
Tolga Birdal
3DH
28
58
0
20 Dec 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Variational Autoencoder with Learned Latent Structure
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
31
42
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
23
79
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
The Power Spherical distribution
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
24
28
0
08 Jun 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
18
153
0
06 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
62
1,635
0
05 Dec 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
13
6
0
07 Oct 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
22
45
0
18 Mar 2019
Stochastic Backpropagation through Mixture Density Distributions
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
57
44
0
19 Jul 2016
1