ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.06023
  4. Cited By
Deep Distribution Regression

Deep Distribution Regression

14 March 2019
Rui-Bing Li
H. Bondell
Brian J. Reich
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Deep Distribution Regression"

18 / 18 papers shown
Title
An Efficient Model-Agnostic Approach for Uncertainty Estimation in
  Data-Restricted Pedometric Applications
An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications
Viacheslav Barkov
Jonas Schmidinger
Robin Gebbers
Martin Atzmueller
85
1
0
18 Sep 2024
Distributional Refinement Network: Distributional Forecasting via Deep
  Learning
Distributional Refinement Network: Distributional Forecasting via Deep Learning
Benjamin Avanzi
Eric Dong
P. Laub
Bernard Wong
AI4TSMedIm
67
0
0
03 Jun 2024
Masked Language Modeling Becomes Conditional Density Estimation for
  Tabular Data Synthesis
Masked Language Modeling Becomes Conditional Density Estimation for Tabular Data Synthesis
SeungHwan An
Gyeongdong Woo
Jaesung Lim
ChangHyun Kim
Sungchul Hong
Jong-June Jeon
111
1
0
31 May 2024
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Aastha Acharya
Caleb Lee
Marissa DÁlonzo
Jared Shamwell
Nisar R. Ahmed
Rebecca L. Russell
BDL
101
0
0
30 May 2024
LearnedWMP: Workload Memory Prediction Using Distribution of Query
  Templates
LearnedWMP: Workload Memory Prediction Using Distribution of Query Templates
Shaikh Quader
Andres Jaramillo
Sumona Mukhopadhyay
Ghadeer Abuoda
Calisto Zuzarte
David Kalmuk
Marin Litoiu
Manos Papagelis
26
1
0
22 Jan 2024
Bivariate DeepKriging for Large-scale Spatial Interpolation of Wind
  Fields
Bivariate DeepKriging for Large-scale Spatial Interpolation of Wind Fields
Pratik Nag
Ying Sun
Brian J. Reich
37
2
0
16 Jul 2023
Stone's theorem for distributional regression in Wasserstein distance
Stone's theorem for distributional regression in Wasserstein distance
Clément Dombry
Thibault Modeste
Romain Pic
161
5
0
02 Feb 2023
REDS: Random Ensemble Deep Spatial prediction
REDS: Random Ensemble Deep Spatial prediction
Ranadeep Daw
C. Wikle
39
10
0
09 Nov 2022
A review of predictive uncertainty estimation with machine learning
A review of predictive uncertainty estimation with machine learning
Hristos Tyralis
Georgia Papacharalampous
UDUQCV
222
46
0
17 Sep 2022
A review of machine learning concepts and methods for addressing
  challenges in probabilistic hydrological post-processing and forecasting
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
84
28
0
17 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDLUQCV
69
3
0
12 Jun 2022
Machine learning methods for postprocessing ensemble forecasts of wind
  gusts: A systematic comparison
Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison
Benedikt Schulz
Sebastian Lerch
60
76
0
17 Jun 2021
Multivariate Probabilistic Regression with Natural Gradient Boosting
Multivariate Probabilistic Regression with Natural Gradient Boosting
Michael O’Malley
A. Sykulski
R. Lumpkin
Alejandro Schuler
BDL
35
7
0
07 Jun 2021
Deconvolutional Density Network: Modeling Free-Form Conditional
  Distributions
Deconvolutional Density Network: Modeling Free-Form Conditional Distributions
Bing Chen
Mazharul Islam
Jisuo Gao
Lin Wang
BDLCML
32
7
0
29 May 2021
Nonparametric Conditional Density Estimation In A Deep Learning
  Framework For Short-Term Forecasting
Nonparametric Conditional Density Estimation In A Deep Learning Framework For Short-Term Forecasting
D. Huberman
Brian J. Reich
H. Bondell
24
6
0
17 Aug 2020
DeepKriging: Spatially Dependent Deep Neural Networks for Spatial
  Prediction
DeepKriging: Spatially Dependent Deep Neural Networks for Spatial Prediction
Wanfang Chen
Yuxiao Li
Brian J. Reich
Ying Sun
92
33
0
23 Jul 2020
Semi-Structured Distributional Regression -- Extending Structured
  Additive Models by Arbitrary Deep Neural Networks and Data Modalities
Semi-Structured Distributional Regression -- Extending Structured Additive Models by Arbitrary Deep Neural Networks and Data Modalities
David Rügamer
Chris Kolb
Nadja Klein
79
23
0
13 Feb 2020
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
86
14
0
26 Aug 2019
1