Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.11420
Cited By
Do Not Trust Additive Explanations
27 March 2019
Alicja Gosiewska
P. Biecek
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Do Not Trust Additive Explanations"
17 / 17 papers shown
Title
shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python
Martin Jullum
Lars Henry Berge Olsen
Jon Lachmann
Annabelle Redelmeier
TDI
FAtt
111
2
0
02 Apr 2025
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
46
252
0
15 Nov 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
58
449
0
27 Jan 2019
Understanding Convolutional Neural Networks for Text Classification
Alon Jacovi
Oren Sar Shalom
Yoav Goldberg
FAtt
44
218
0
21 Sep 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
52
524
0
21 Jun 2018
Explanations of model predictions with live and breakDown packages
M. Staniak
P. Biecek
FAtt
11
117
0
05 Apr 2018
Enslaving the Algorithm: From a "Right to an Explanation" to a "Right to Better Decisions"?
L. Edwards
Michael Veale
FaML
AILaw
32
135
0
20 Mar 2018
Consistent Individualized Feature Attribution for Tree Ensembles
Scott M. Lundberg
G. Erion
Su-In Lee
FAtt
TDI
52
1,379
0
12 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
81
2,332
0
01 Nov 2017
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
295
204
0
06 Jul 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
549
21,613
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
123
3,848
0
10 Apr 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
216
19,796
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data
H. Alemzadeh
Ravishankar Iyer
Zbigniew T. Kalbarczyk
N. Leveson
J. Raman
29
303
0
13 Jul 2015
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
100
1,310
0
29 Jul 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
194
7,252
0
20 Dec 2013
1