Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.02323
Cited By
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
4 April 2019
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations"
35 / 35 papers shown
Title
ChannelExplorer: Exploring Class Separability Through Activation Channel Visualization
Md Rahat-uz- Zaman
Bei Wang
Paul Rosen
21
0
0
06 May 2025
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
57
0
0
14 Apr 2025
Understanding the Role of Pathways in a Deep Neural Network
Lei Lyu
Chen Pang
Jihua Wang
27
3
0
28 Feb 2024
Understanding Deep Learning defenses Against Adversarial Examples Through Visualizations for Dynamic Risk Assessment
Xabier Echeberria-Barrio
Amaia Gil-Lerchundi
Jon Egana-Zubia
Raul Orduna Urrutia
AAML
21
6
0
12 Feb 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
27
1
0
07 Dec 2023
Are We Closing the Loop Yet? Gaps in the Generalizability of VIS4ML Research
Hariharan Subramonyam
Jessica Hullman
VLM
HAI
27
8
0
10 Aug 2023
The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Angelos Chatzimparmpas
R. Martins
I. Jusufi
K. Kucher
Fabrice Rossi
A. Kerren
FAtt
24
160
0
22 Dec 2022
Towards Efficient Visual Simplification of Computational Graphs in Deep Neural Networks
Rusheng Pan
Zhiyong Wang
Yating Wei
Han Gao
Gongchang Ou
Caleb Chen Cao
Jinglin Xu
Tong Xu
Wei-Neng Chen
GNN
18
4
0
21 Dec 2022
From Attribution Maps to Human-Understandable Explanations through Concept Relevance Propagation
Reduan Achtibat
Maximilian Dreyer
Ilona Eisenbraun
S. Bosse
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
FAtt
27
131
0
07 Jun 2022
ViNNPruner: Visual Interactive Pruning for Deep Learning
U. Schlegel
Samuel Schiegg
Daniel A. Keim
VLM
19
2
0
31 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
30
26
0
16 May 2022
DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps
Donald Bertucci
M. Hamid
Yashwanthi Anand
Anita Ruangrotsakun
Delyar Tabatabai
Melissa Perez
Minsuk Kahng
38
29
0
14 May 2022
NOVA: A Practical Method for Creating Notebook-Ready Visual Analytics
Zijie J. Wang
David Munechika
Seongmin Lee
Duen Horng Chau
GNN
33
10
0
08 May 2022
Explain to Not Forget: Defending Against Catastrophic Forgetting with XAI
Sami Ede
Serop Baghdadlian
Leander Weber
A. Nguyen
Dario Zanca
Wojciech Samek
Sebastian Lapuschkin
CLL
27
6
0
04 May 2022
VisCUIT: Visual Auditor for Bias in CNN Image Classifier
Seongmin Lee
Zijie J. Wang
Judy Hoffman
Duen Horng Chau
22
11
0
12 Apr 2022
Visualizing Deep Neural Networks with Topographic Activation Maps
A. Krug
Raihan Kabir Ratul
Christopher Olson
Sebastian Stober
FAtt
AI4CE
28
3
0
07 Apr 2022
ConceptExplainer: Interactive Explanation for Deep Neural Networks from a Concept Perspective
Jinbin Huang
Aditi Mishra
Bum Chul Kwon
Chris Bryan
FAtt
HAI
38
31
0
04 Apr 2022
Debiased-CAM to mitigate systematic error with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
19
1
0
30 Jan 2022
VAC-CNN: A Visual Analytics System for Comparative Studies of Deep Convolutional Neural Networks
Xiwei Xuan
Xiaoyu Zhang
Oh-Hyun Kwon
K. Ma
HAI
16
17
0
25 Oct 2021
Explaining Convolutional Neural Networks by Tagging Filters
Anna Nguyen
Daniel Hagenmayer
T. Weller
Michael Färber
FAtt
19
0
0
20 Sep 2021
A Comprehensive Survey on Graph Anomaly Detection with Deep Learning
Xiaoxiao Ma
Jia Wu
Shan Xue
Jian Yang
Chuan Zhou
Quan Z. Sheng
Hui Xiong
Leman Akoglu
GNN
AI4TS
28
538
0
14 Jun 2021
Exploiting Explanations for Model Inversion Attacks
Xu Zhao
Wencan Zhang
Xiao Xiao
Brian Y. Lim
MIACV
21
82
0
26 Apr 2021
Explainable Adversarial Attacks in Deep Neural Networks Using Activation Profiles
G. Cantareira
R. Mello
F. Paulovich
AAML
16
9
0
18 Mar 2021
EX-RAY: Distinguishing Injected Backdoor from Natural Features in Neural Networks by Examining Differential Feature Symmetry
Yingqi Liu
Guangyu Shen
Guanhong Tao
Zhenting Wang
Shiqing Ma
X. Zhang
AAML
22
8
0
16 Mar 2021
Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
Md. Naimul Hoque
Klaus Mueller
CML
51
30
0
03 Jan 2021
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
18
18
0
10 Dec 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Attention Flows: Analyzing and Comparing Attention Mechanisms in Language Models
Joseph F DeRose
Jiayao Wang
M. Berger
15
83
0
03 Sep 2020
A Survey of Visual Analytics Techniques for Machine Learning
Jun Yuan
Changjian Chen
Weikai Yang
Mengchen Liu
Jiazhi Xia
Shixia Liu
19
216
0
21 Aug 2020
The Role of Domain Expertise in User Trust and the Impact of First Impressions with Intelligent Systems
Mahsan Nourani
J. King
Eric D. Ragan
12
98
0
20 Aug 2020
DeepStreamCE: A Streaming Approach to Concept Evolution Detection in Deep Neural Networks
Lorraine Chambers
M. Gaber
Z. Abdallah
16
4
0
08 Apr 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
18
482
0
12 Feb 2020
Analyzing the Noise Robustness of Deep Neural Networks
Kelei Cao
Mengchen Liu
Hang Su
Jing Wu
Jun Zhu
Shixia Liu
AAML
52
89
0
26 Jan 2020
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
38
224
0
19 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
1