Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.03392
Cited By
Effective and Efficient Dropout for Deep Convolutional Neural Networks
6 April 2019
Shaofeng Cai
Jinyang Gao
Gang Chen
Beng Chin Ooi
Wei Wang
Meihui Zhang
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Effective and Efficient Dropout for Deep Convolutional Neural Networks"
12 / 12 papers shown
Title
How to Use Dropout Correctly on Residual Networks with Batch Normalization
Bum Jun Kim
Hyeyeon Choi
Hyeonah Jang
Donggeon Lee
Sang Woo Kim
22
7
0
13 Feb 2023
Evaluating CNN with Oscillatory Activation Function
Jeevanshi Sharma
13
1
0
13 Nov 2022
Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results
T. Ridnik
Hussam Lawen
Emanuel Ben-Baruch
Asaf Noy
38
11
0
07 Apr 2022
A Survey on Dropout Methods and Experimental Verification in Recommendation
Y. Li
Weizhi Ma
C. L. Philip Chen
M. Zhang
Yiqun Liu
Shaoping Ma
Yue Yang
33
9
0
05 Apr 2022
Decoding ECoG signal into 3D hand translation using deep learning
Maciej Śliwowski
Matthieu Martin
Antoine Souloumiac
P. Blanchart
T. Aksenova
20
27
0
05 Oct 2021
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
52
94
0
01 Jul 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
31
79
0
17 Sep 2020
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
18
149
0
25 Apr 2019
Understanding Dropout as an Optimization Trick
Sangchul Hahn
Heeyoul Choi
ODL
13
34
0
26 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1