Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.08720
Cited By
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
18 April 2019
Thanh-Toan Do
Toan M. Tran
Ian Reid
B. V. Kumar
Tuan Hoang
G. Carneiro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning"
8 / 8 papers shown
Title
Semantic-Enhanced Relational Metric Learning for Recommender Systems
Mingming Li
Fuqing Zhu
Feng Yuan
Songlin Hu
40
0
0
07 Jun 2024
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
N. Raichur
Lucas Heublein
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
CLL
BDL
73
7
0
17 May 2024
Representation Learning for Tablet and Paper Domain Adaptation in Favor of Online Handwriting Recognition
Felix Ott
David Rügamer
Lucas Heublein
Bernd Bischl
Christopher Mutschler
OOD
14
1
0
16 Jan 2023
Deep Metric Learning with Chance Constraints
Y. Z. Gürbüz
Ogul Can
Aydin Alatan
19
2
0
19 Sep 2022
Zero-Shot Learning on 3D Point Cloud Objects and Beyond
A. Cheraghian
Shafin Rahman
T. Chowdhury
Dylan Campbell
L. Petersson
3DPC
19
58
0
11 Apr 2021
NPT-Loss: A Metric Loss with Implicit Mining for Face Recognition
S. S. Khalid
Muhammad Awais
Chi-Ho Chan
Zhenhua Feng
Ammarah Farooq
A. Akbari
J. Kittler
CVBM
11
10
0
05 Mar 2021
Deep multi-metric learning for text-independent speaker verification
Jiwei Xu
Xinggang Wang
Bin Feng
Wenyu Liu
41
25
0
17 Jul 2020
Beyond Triplet Loss: Meta Prototypical N-tuple Loss for Person Re-identification
Zhizheng Zhang
Cuiling Lan
Wenjun Zeng
Zhibo Chen
Shih-Fu Chang
30
12
0
08 Jun 2020
1