ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09044
  4. Cited By
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization
  Simulation

NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

19 April 2019
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
ArXivPDFHTML

Papers citing "NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation"

9 / 9 papers shown
Title
Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration
Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration
Yi-Tang Chen
Haoyu Li
Neng Shi
Xihaier Luo
Wei-ping Xu
Han-Wei Shen
44
0
0
01 Apr 2025
Data Type Agnostic Visual Sensitivity Analysis
Data Type Agnostic Visual Sensitivity Analysis
Nikolaus Piccolotto
M. Bögl
C. Muehlmann
K. Nordhausen
Peter Filzmoser
Johanna Schmidt
Silvia Miksch
31
0
0
07 Sep 2023
Neural Stream Functions
Neural Stream Functions
Skylar W. Wurster
Hanqi Guo
Tom Peterka
Han-Wei Shen
24
0
0
16 Jul 2023
The State of the Art in Enhancing Trust in Machine Learning Models with
  the Use of Visualizations
The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Angelos Chatzimparmpas
R. Martins
I. Jusufi
K. Kucher
Fabrice Rossi
A. Kerren
FAtt
26
160
0
22 Dec 2022
VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space
  Exploration of Ensemble Simulations
VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space Exploration of Ensemble Simulations
Neng Shi
Jiayi Xu
Haoyu Li
Hanqi Guo
J. Woodring
Han-Wei Shen
28
18
0
25 Jul 2022
GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for
  Parameter Space Exploration of Unstructured-Mesh Ocean Simulations
GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations
Neng Shi
Jiayi Xu
Skylar W. Wurster
Hanqi Guo
J. Woodring
L. V. Roekel
Han-Wei Shen
AI4TS
AI4CE
34
32
0
18 Feb 2022
Visual Parameter Selection for Spatial Blind Source Separation
Visual Parameter Selection for Spatial Blind Source Separation
Nikolaus Piccolotto
M. Bögl
C. Muehlmann
K. Nordhausen
Peter Filzmoser
Silvia Miksch
14
7
0
16 Dec 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1