Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.09406
Cited By
v1
v2
v3 (latest)
DeepMoD: Deep learning for Model Discovery in noisy data
20 April 2019
G. Both
Subham Choudhury
P. Sens
R. Kusters
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DeepMoD: Deep learning for Model Discovery in noisy data"
50 / 52 papers shown
Title
Physics-informed Temporal Alignment for Auto-regressive PDE Foundation Models
Congcong Zhu
Xiaoyan Xu
Jiayue Han
Jingrun Chen
OOD
AI4CE
163
0
0
16 May 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
182
0
0
02 Mar 2025
DGenNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
134
1
0
10 Feb 2025
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
Siva Viknesh
Younes Tatari
Amirhossein Arzani
113
3
0
21 Oct 2024
On the estimation rate of Bayesian PINN for inverse problems
Yi Sun
Debarghya Mukherjee
Yves Atchadé
PINN
112
1
0
21 Jun 2024
GN-SINDy: Greedy Sampling Neural Network in Sparse Identification of Nonlinear Partial Differential Equations
Ali Forootani
Peter Benner
57
1
0
14 May 2024
An invariance constrained deep learning network for PDE discovery
Chao Chen
Hui Li
Xiaowei Jin
PINN
45
1
0
06 Feb 2024
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
57
0
0
09 Oct 2023
Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
Mengge Du
Yuntian Chen
Longfeng Nie
Siyu Lou
Dong-juan Zhang
AI4CE
85
8
0
14 Sep 2023
A Robust SINDy Approach by Combining Neural Networks and an Integral Form
Ali Forootani
P. Goyal
P. Benner
103
4
0
13 Sep 2023
Weak-PDE-LEARN: A Weak Form Based Approach to Discovering PDEs From Noisy, Limited Data
R. Stephany
Christopher Earls
61
4
0
09 Sep 2023
Learning minimal representations of stochastic processes with variational autoencoders
Gabriel Fernández-Fernández
Carlo Manzo
M. Lewenstein
A. Dauphin
Gorka Muñoz-Gil
DiffM
62
6
0
21 Jul 2023
Discovering stochastic partial differential equations from limited data using variational Bayes inference
Yogesh Chandrakant Mathpati
Tapas Tripura
R. Nayek
S. Chakraborty
DiffM
58
6
0
28 Jun 2023
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
122
42
0
02 May 2023
Information Theory Inspired Pattern Analysis for Time-series Data
Yushan Huang
Yuchen Zhao
Alexander Capstick
Francesca Palermo
Hamed Haddadi
Payam Barnaghi
AI4TS
56
1
0
22 Feb 2023
Hierarchical shrinkage Gaussian processes: applications to computer code emulation and dynamical system recovery
T. Tang
Simon Mak
David B. Dunson
62
4
0
01 Feb 2023
Generalized Neural Closure Models with Interpretability
Abhinava Gupta
Pierre FJ Lermusiaux
AI4CE
78
9
0
15 Jan 2023
Harmonic (Quantum) Neural Networks
Atiyo Ghosh
Antonio A. Gentile
M. Dagrada
Chul Lee
S. Kim
Hyukgeun Cha
Yunjun Choi
Brad Kim
J. Kye
V. Elfving
AI4CE
76
1
0
14 Dec 2022
PDE-LEARN: Using Deep Learning to Discover Partial Differential Equations from Noisy, Limited Data
R. Stephany
Christopher Earls
46
18
0
09 Dec 2022
Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics with Quantified Uncertainty
Luning Sun
Daniel Zhengyu Huang
Hao Sun
Jian-Xun Wang
75
10
0
14 Oct 2022
A Method for Computing Inverse Parametric PDE Problems with Random-Weight Neural Networks
S. Dong
Yiran Wang
66
22
0
09 Oct 2022
Weak Collocation Regression method: fast reveal hidden stochastic dynamics from high-dimensional aggregate data
Liwei Lu
Zhijun Zeng
Yan Jiang
Yi Zhu
Pipi Hu
92
4
0
06 Sep 2022
Discovery of partial differential equations from highly noisy and sparse data with physics-informed information criterion
Hao Xu
Junsheng Zeng
Dongxiao Zhang
DiffM
71
20
0
05 Aug 2022
Noise-aware Physics-informed Machine Learning for Robust PDE Discovery
Pongpisit Thanasutives
Takeshi Morita
M. Numao
Ken-ichi Fukui
PINN
AI4CE
125
19
0
26 Jun 2022
Rediscovering orbital mechanics with machine learning
Pablo Lemos
N. Jeffrey
M. Cranmer
S. Ho
Peter W. Battaglia
PINN
AI4CE
84
92
0
04 Feb 2022
Learning deterministic hydrodynamic equations from stochastic active particle dynamics
Suryanarayana Maddu
Q. Vagne
I. Sbalzarini
AI4CE
23
4
0
21 Jan 2022
Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter
D. Wadekar
L. Thiele
F. Villaescusa-Navarro
J. Hill
M. Cranmer
D. Spergel
N. Battaglia
D. Anglés-Alcázar
L. Hernquist
S. Ho
114
12
0
04 Jan 2022
Quantum Model-Discovery
Niklas Heim
Atiyo Ghosh
Oleksandr Kyriienko
V. Elfving
70
11
0
11 Nov 2021
PDE-READ: Human-readable Partial Differential Equation Discovery using Deep Learning
R. Stephany
Christopher Earls
DiffM
AIMat
87
29
0
01 Nov 2021
Discovering PDEs from Multiple Experiments
Georges Tod
G. Both
R. Kusters
138
1
0
24 Sep 2021
Learning Dynamics from Noisy Measurements using Deep Learning with a Runge-Kutta Constraint
P. Goyal
P. Benner
81
9
0
23 Sep 2021
Data-Driven Theory-guided Learning of Partial Differential Equations using SimultaNeous Basis Function Approximation and Parameter Estimation (SNAPE)
Sutanu Bhowmick
Satish Nagarajaiah
51
7
0
14 Sep 2021
Bayesian Deep Learning for Partial Differential Equation Parameter Discovery with Sparse and Noisy Data
Christophe Bonneville
Christopher Earls
96
14
0
05 Aug 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
82
22
0
26 Jul 2021
Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of Partial Differential Equations
Zhiming Zhang
Yongming Liu
54
11
0
08 Jul 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
Suryanarayana Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
94
84
0
02 Jul 2021
Sparsistent Model Discovery
Georges Tod
G. Both
R. Kusters
105
1
0
22 Jun 2021
Fully differentiable model discovery
G. Both
R. Kusters
PINN
77
2
0
09 Jun 2021
Robust discovery of partial differential equations in complex situations
Hao Xu
Dongxiao Zhang
AI4CE
87
29
0
31 May 2021
Physics-informed Spline Learning for Nonlinear Dynamics Discovery
Fangzheng Sun
Yang Liu
Hao Sun
AI4CE
69
28
0
05 May 2021
Model discovery in the sparse sampling regime
G. Both
Georges Tod
R. Kusters
59
3
0
02 May 2021
Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Seungjun Lee
Haesang Yang
W. Seong
61
13
0
23 Feb 2021
Learning physically consistent mathematical models from data using group sparsity
Suryanarayana Maddu
B. Cheeseman
Christian L. Müller
I. Sbalzarini
54
5
0
11 Dec 2020
Sparsely constrained neural networks for model discovery of PDEs
G. Both
Gijs Vermarien
R. Kusters
20
5
0
09 Nov 2020
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions from Data
Kadierdan Kaheman
Steven L. Brunton
J. Nathan Kutz
85
84
0
12 Sep 2020
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDL
AI4CE
74
47
0
19 Jul 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
96
483
0
19 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
94
227
0
10 Jun 2020
Revealing hidden dynamics from time-series data by ODENet
Pipi Hu
Wuyue Yang
Yi Zhu
L. Hong
AI4TS
149
35
0
11 May 2020
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINN
AI4CE
117
400
0
05 May 2020
1
2
Next