Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.13195
Cited By
Test Selection for Deep Learning Systems
30 April 2019
Wei Ma
Mike Papadakis
Anestis Tsakmalis
Maxime Cordy
Yves Le Traon
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Test Selection for Deep Learning Systems"
26 / 26 papers shown
Title
MetaSel: A Test Selection Approach for Fine-tuned DNN Models
Amin Abbasishahkoo
Mahboubeh Dadkhah
Lionel C. Briand
Dayi Lin
49
0
0
21 Mar 2025
FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection
Jialuo Chen
Jingyi Wang
Xiyue Zhang
Youcheng Sun
Marta Kwiatkowska
Jiming Chen
Peng Cheng
11
0
0
13 Sep 2024
LeCov: Multi-level Testing Criteria for Large Language Models
Xuan Xie
Jiayang Song
Yuheng Huang
Da Song
Fuyuan Zhang
Felix Juefei-Xu
Lei Ma
ELM
29
0
0
20 Aug 2024
A3Rank: Augmentation Alignment Analysis for Prioritizing Overconfident Failing Samples for Deep Learning Models
Zhengyuan Wei
Haipeng Wang
Qili Zhou
William Chan
34
0
0
19 Jul 2024
DeepKnowledge: Generalisation-Driven Deep Learning Testing
S. Missaoui
Simos Gerasimou
Nikolaos Matragkas
27
0
0
25 Mar 2024
GIST: Generated Inputs Sets Transferability in Deep Learning
Florian Tambon
Foutse Khomh
G. Antoniol
AAML
34
1
0
01 Nov 2023
Hazards in Deep Learning Testing: Prevalence, Impact and Recommendations
Salah Ghamizi
Maxime Cordy
Yuejun Guo
Mike Papadakis
And Yves Le Traon
16
1
0
11 Sep 2023
Evaluating the Robustness of Test Selection Methods for Deep Neural Networks
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Wei Ma
Mike Papadakis
Yves Le Traon
NoLa
OOD
22
3
0
29 Jul 2023
CertPri: Certifiable Prioritization for Deep Neural Networks via Movement Cost in Feature Space
Haibin Zheng
Jinyin Chen
Haibo Jin
AAML
13
7
0
18 Jul 2023
Uncertainty Aware Deep Learning Model for Secure and Trustworthy Channel Estimation in 5G Networks
Ferhat Ozgur Catak
Marc Brittain
Murat Kuzlu
Christine Serres
UQCV
15
1
0
04 May 2023
DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep Neural Networks
Zohreh Aghababaeyan
Manel Abdellatif
Mahboubeh Dadkhah
Lionel C. Briand
AAML
28
15
0
08 Mar 2023
Unveiling Code Pre-Trained Models: Investigating Syntax and Semantics Capacities
Wei Ma
Shangqing Liu
Mengjie Zhao
Xiaofei Xie
Wenhan Wang
Q. Hu
Jiexin Zhang
Yang Liu
19
16
0
20 Dec 2022
An Exploratory Study of AI System Risk Assessment from the Lens of Data Distribution and Uncertainty
Zhijie Wang
Yuheng Huang
L. Ma
Haruki Yokoyama
Susumu Tokumoto
Kazuki Munakata
24
4
0
13 Dec 2022
Aries: Efficient Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Lei Ma
Mike Papadakis
Yves Le Traon
AAML
12
17
0
22 Jul 2022
Guiding the retraining of convolutional neural networks against adversarial inputs
Francisco Durán
Silverio Martínez-Fernández
Michael Felderer
Xavier Franch
AAML
30
1
0
08 Jul 2022
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Michael Weiss
Paolo Tonella
AAML
8
49
0
02 May 2022
Characterizing and Understanding the Behavior of Quantized Models for Reliable Deployment
Qiang Hu
Yuejun Guo
Maxime Cordy
Xiaofei Xie
Wei Ma
Mike Papadakis
Yves Le Traon
MQ
36
1
0
08 Apr 2022
LaF: Labeling-Free Model Selection for Automated Deep Neural Network Reusing
Qiang Hu
Yuejun Guo
Maxime Cordy
Xiaofei Xie
Mike Papadakis
Yves Le Traon
21
5
0
08 Apr 2022
NPC: Neuron Path Coverage via Characterizing Decision Logic of Deep Neural Networks
Xiaofei Xie
Tianlin Li
Jian-Xun Wang
L. Ma
Qing-Wu Guo
Felix Juefei Xu
Yang Liu
AAML
11
50
0
24 Mar 2022
Robust Active Learning: Sample-Efficient Training of Robust Deep Learning Models
Yuejun Guo
Qiang Hu
Maxime Cordy
Mike Papadakis
Yves Le Traon
VLM
OOD
14
4
0
05 Dec 2021
A Review and Refinement of Surprise Adequacy
Michael Weiss
Rwiddhi Chakraborty
Paolo Tonella
AAML
AI4TS
13
16
0
10 Mar 2021
Towards Characterizing Adversarial Defects of Deep Learning Software from the Lens of Uncertainty
Xiyue Zhang
Xiaofei Xie
Lei Ma
Xiaoning Du
Q. Hu
Yang Liu
Jianjun Zhao
Meng Sun
AAML
8
76
0
24 Apr 2020
Machine Learning Testing: Survey, Landscapes and Horizons
Jie M. Zhang
Mark Harman
Lei Ma
Yang Liu
VLM
AILaw
19
739
0
19 Jun 2019
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1