ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00424
  4. Cited By
An ADMM Based Framework for AutoML Pipeline Configuration

An ADMM Based Framework for AutoML Pipeline Configuration

1 May 2019
Sijia Liu
Parikshit Ram
Deepak Vijaykeerthy
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Dakuo Wang
A. Conn
Alexander G. Gray
ArXivPDFHTML

Papers citing "An ADMM Based Framework for AutoML Pipeline Configuration"

18 / 18 papers shown
Title
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Yuen-Man Pun
Iman Shames
31
0
0
04 May 2025
A knowledge-driven AutoML architecture
A knowledge-driven AutoML architecture
C. Cofaru
Johan Loeckx
26
0
0
28 Nov 2023
Deep Pipeline Embeddings for AutoML
Deep Pipeline Embeddings for AutoML
Sebastian Pineda Arango
Josif Grabocka
30
2
0
23 May 2023
OpenBox: A Python Toolkit for Generalized Black-box Optimization
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang
Yu Shen
Yang Li
Beicheng Xu
Sixian Du
Wentao Zhang
Ce Zhang
Bin Cui
38
4
0
26 Apr 2023
A Unified and Efficient Coordinating Framework for Autonomous DBMS
  Tuning
A Unified and Efficient Coordinating Framework for Autonomous DBMS Tuning
Xinyi Zhang
Zhuonan Chang
Hong Wu
Yang Li
Jia Chen
Jian Tan
Feifei Li
Bin Cui
26
10
0
10 Mar 2023
Towards Personalized Preprocessing Pipeline Search
Towards Personalized Preprocessing Pipeline Search
Diego Martinez
Daochen Zha
Qiaoyu Tan
Xia Hu
AI4TS
29
2
0
28 Feb 2023
Telling Stories from Computational Notebooks: AI-Assisted Presentation
  Slides Creation for Presenting Data Science Work
Telling Stories from Computational Notebooks: AI-Assisted Presentation Slides Creation for Presenting Data Science Work
Chengbo Zheng
Dakuo Wang
A. Wang
Xiaojuan Ma
22
52
0
21 Mar 2022
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
AI4CE
37
25
0
15 Dec 2021
Naive Automated Machine Learning
Naive Automated Machine Learning
F. Mohr
Marcel Wever
16
11
0
29 Nov 2021
A Scalable AutoML Approach Based on Graph Neural Networks
A Scalable AutoML Approach Based on Graph Neural Networks
M. Helali
Essam Mansour
Ibrahim Abdelaziz
Julian T Dolby
Kavitha Srinivas
GNN
29
12
0
29 Oct 2021
Data Quality Toolkit: Automatic assessment of data quality and
  remediation for machine learning datasets
Data Quality Toolkit: Automatic assessment of data quality and remediation for machine learning datasets
Nitin Gupta
Hima Patel
S. Afzal
Naveen Panwar
Ruhi Sharma Mittal
...
S. Mehta
Sandeep Hans
P. Lohia
Aniya Aggarwal
Diptikalyan Saha
28
40
0
12 Aug 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Bin Cui
LRM
29
44
0
19 Jul 2021
Productivity, Portability, Performance: Data-Centric Python
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
54
94
0
01 Jul 2021
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Solving Constrained CASH Problems with ADMM
Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray
26
3
0
17 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
21
224
0
11 Jun 2020
Trust in AutoML: Exploring Information Needs for Establishing Trust in
  Automated Machine Learning Systems
Trust in AutoML: Exploring Information Needs for Establishing Trust in Automated Machine Learning Systems
Jaimie Drozdal
Justin D. Weisz
Dakuo Wang
Gaurav Dass
Bingsheng Yao
Changruo Zhao
Michael J. Muller
Lin Ju
Hui Su
44
125
0
17 Jan 2020
Human-AI Collaboration in Data Science: Exploring Data Scientists'
  Perceptions of Automated AI
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
178
308
0
05 Sep 2019
1