Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01208
Cited By
Approximation spaces of deep neural networks
3 May 2019
Rémi Gribonval
Gitta Kutyniok
M. Nielsen
Felix Voigtländer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximation spaces of deep neural networks"
21 / 21 papers shown
Title
Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation
Luwei Sun
Dongrui Shen
Han Feng
40
2
0
16 Jul 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
44
3
0
12 Mar 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
31
4
0
18 Jan 2024
Operator theory, kernels, and Feedforward Neural Networks
P. Jorgensen
Myung-Sin Song
James Tian
35
0
0
03 Jan 2023
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
52
6
0
17 Sep 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
20
1
0
25 Mar 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
44
20
0
31 Jan 2022
Training Thinner and Deeper Neural Networks: Jumpstart Regularization
Carles Roger Riera Molina
Camilo Rey
Thiago Serra
Eloi Puertas
O. Pujol
27
4
0
30 Jan 2022
Approximation of functions with one-bit neural networks
C. S. Güntürk
Weilin Li
17
8
0
16 Dec 2021
Sobolev-type embeddings for neural network approximation spaces
Philipp Grohs
F. Voigtlaender
14
1
0
28 Oct 2021
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
22
4
0
31 Aug 2021
Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces
Philipp Grohs
F. Voigtlaender
8
34
0
06 Apr 2021
The universal approximation theorem for complex-valued neural networks
F. Voigtlaender
19
62
0
06 Dec 2020
Approximation of Smoothness Classes by Deep Rectifier Networks
Mazen Ali
A. Nouy
9
9
0
30 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
50
0
09 Jul 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
64
247
0
09 Jan 2020
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
17
8
0
22 Oct 2019
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
22
17
0
31 Aug 2018
On the stable recovery of deep structured linear networks under sparsity constraints
F. Malgouyres
22
7
0
31 May 2017
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
Zifeng Wu
Chunhua Shen
A. Hengel
SSeg
260
1,491
0
30 Nov 2016
Benefits of depth in neural networks
Matus Telgarsky
142
602
0
14 Feb 2016
1