Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02175
Cited By
Adversarial Examples Are Not Bugs, They Are Features
6 May 2019
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
A. Madry
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Bugs, They Are Features"
50 / 306 papers shown
Title
GreedyFool: Multi-Factor Imperceptibility and Its Application to Designing a Black-box Adversarial Attack
Hui Liu
Bo Zhao
Minzhi Ji
Peng Liu
AAML
27
6
0
14 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Eric Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
26
94
0
08 Oct 2020
Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability
Ishai Rosenberg
Shai Meir
J. Berrebi
I. Gordon
Guillaume Sicard
Eli David
AAML
SILM
9
25
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
33
62
0
11 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
27
146
0
03 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
19
19
0
19 Aug 2020
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
13
3
0
07 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
31
65
0
04 Aug 2020
Robust and Generalizable Visual Representation Learning via Random Convolutions
Zhenlin Xu
Deyi Liu
Junlin Yang
Colin Raffel
Marc Niethammer
OOD
AAML
49
189
0
25 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
19
23
0
22 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
34
416
0
16 Jul 2020
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Robert Geirhos
Kristof Meding
Felix Wichmann
13
116
0
30 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
20
246
0
13 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Blind Backdoors in Deep Learning Models
Eugene Bagdasaryan
Vitaly Shmatikov
AAML
FedML
SILM
24
298
0
08 May 2020
Towards Frequency-Based Explanation for Robust CNN
Zifan Wang
Yilin Yang
Ankit Shrivastava
Varun Rawal
Zihao Ding
AAML
FAtt
13
47
0
06 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
M2m: Imbalanced Classification via Major-to-minor Translation
Jaehyung Kim
Jongheon Jeong
Jinwoo Shin
13
220
0
01 Apr 2020
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
81
0
26 Mar 2020
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection
Mohammadreza Salehi
Atrin Arya
Barbod Pajoum
Mohammad Otoofi
Amirreza Shaeiri
M. Rohban
Hamid R. Rabiee
AAML
26
62
0
12 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
161
113
0
05 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
22
396
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
31
69
0
25 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
20
0
0
25 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
17
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
19
115
0
13 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
27
64
0
11 Feb 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
22
107
0
27 Dec 2019
Label-Consistent Backdoor Attacks
Alexander Turner
Dimitris Tsipras
A. Madry
AAML
11
383
0
05 Dec 2019
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
Abdullah Hamdi
Sara Rojas
Ali K. Thabet
Bernard Ghanem
AAML
3DPC
25
127
0
01 Dec 2019
Universal adversarial examples in speech command classification
Jon Vadillo
Roberto Santana
AAML
29
29
0
22 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
22
3
0
19 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
18
119
0
08 Sep 2019
Adversarial shape perturbations on 3D point clouds
Daniel Liu
Ronald Yu
Hao Su
3DPC
27
12
0
16 Aug 2019
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech Recognition Systems
Lea Schonherr
Thorsten Eisenhofer
Steffen Zeiler
Thorsten Holz
D. Kolossa
AAML
41
63
0
05 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
13
80
0
25 Jun 2019
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
8
68
0
10 Jun 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
30
204
0
06 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
16
63
0
03 Jun 2019
The Principle of Unchanged Optimality in Reinforcement Learning Generalization
A. Irpan
Xingyou Song
OffRL
25
7
0
02 Jun 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
27
348
0
25 May 2019
Zero-shot Knowledge Transfer via Adversarial Belief Matching
P. Micaelli
Amos Storkey
17
227
0
23 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
19
374
0
30 Apr 2019
Previous
1
2
3
4
5
6
7
Next