ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02175
  4. Cited By
Adversarial Examples Are Not Bugs, They Are Features

Adversarial Examples Are Not Bugs, They Are Features

6 May 2019
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
A. Madry
    SILM
ArXivPDFHTML

Papers citing "Adversarial Examples Are Not Bugs, They Are Features"

50 / 306 papers shown
Title
GreedyFool: Multi-Factor Imperceptibility and Its Application to
  Designing a Black-box Adversarial Attack
GreedyFool: Multi-Factor Imperceptibility and Its Application to Designing a Black-box Adversarial Attack
Hui Liu
Bo Zhao
Minzhi Ji
Peng Liu
AAML
27
6
0
14 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial
  Transferability
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Eric Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
26
94
0
08 Oct 2020
Generating End-to-End Adversarial Examples for Malware Classifiers Using
  Explainability
Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability
Ishai Rosenberg
Shai Meir
J. Berrebi
I. Gordon
Guillaume Sicard
Eli David
AAML
SILM
9
25
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
33
62
0
11 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
  Adversarial Attacks
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks:
  Forgotten Lessons and the Bridge to Active and Open World Learning
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
27
146
0
03 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling
  Adversarial Training
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
19
19
0
19 Aug 2020
Optimizing Information Loss Towards Robust Neural Networks
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
13
3
0
07 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
31
65
0
04 Aug 2020
Robust and Generalizable Visual Representation Learning via Random
  Convolutions
Robust and Generalizable Visual Representation Learning via Random Convolutions
Zhenlin Xu
Deyi Liu
Junlin Yang
Colin Raffel
Marc Niethammer
OOD
AAML
49
189
0
25 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
19
23
0
22 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
34
416
0
16 Jul 2020
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans
  by measuring error consistency
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Robert Geirhos
Kristof Meding
Felix Wichmann
13
116
0
30 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
20
246
0
13 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Blind Backdoors in Deep Learning Models
Blind Backdoors in Deep Learning Models
Eugene Bagdasaryan
Vitaly Shmatikov
AAML
FedML
SILM
24
298
0
08 May 2020
Towards Frequency-Based Explanation for Robust CNN
Towards Frequency-Based Explanation for Robust CNN
Zifan Wang
Yilin Yang
Ankit Shrivastava
Varun Rawal
Zihao Ding
AAML
FAtt
13
47
0
06 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
M2m: Imbalanced Classification via Major-to-minor Translation
M2m: Imbalanced Classification via Major-to-minor Translation
Jaehyung Kim
Jongheon Jeong
Jinwoo Shin
13
220
0
01 Apr 2020
Going in circles is the way forward: the role of recurrence in visual
  inference
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
81
0
26 Mar 2020
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty
  Detection
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection
Mohammadreza Salehi
Atrin Arya
Barbod Pajoum
Mohammad Otoofi
Amirreza Shaeiri
M. Rohban
Hamid R. Rabiee
AAML
26
62
0
12 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust
  Generalization
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
161
113
0
05 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
22
396
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help,
  Double Descend, or Hurt Generalization
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
31
69
0
25 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
20
0
0
25 Feb 2020
CEB Improves Model Robustness
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
17
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
19
115
0
13 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
27
64
0
11 Feb 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
22
107
0
27 Dec 2019
Label-Consistent Backdoor Attacks
Label-Consistent Backdoor Attacks
Alexander Turner
Dimitris Tsipras
A. Madry
AAML
11
383
0
05 Dec 2019
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
Abdullah Hamdi
Sara Rojas
Ali K. Thabet
Bernard Ghanem
AAML
3DPC
25
127
0
01 Dec 2019
Universal adversarial examples in speech command classification
Universal adversarial examples in speech command classification
Jon Vadillo
Roberto Santana
AAML
29
29
0
22 Nov 2019
Defective Convolutional Networks
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
22
3
0
19 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for
  Embedded Neural Networks
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
When Explainability Meets Adversarial Learning: Detecting Adversarial
  Examples using SHAP Signatures
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
18
119
0
08 Sep 2019
Adversarial shape perturbations on 3D point clouds
Adversarial shape perturbations on 3D point clouds
Daniel Liu
Ronald Yu
Hao Su
3DPC
27
12
0
16 Aug 2019
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech
  Recognition Systems
Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech Recognition Systems
Lea Schonherr
Thorsten Eisenhofer
Steffen Zeiler
Thorsten Holz
D. Kolossa
AAML
41
63
0
05 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Improving performance of deep learning models with axiomatic attribution
  priors and expected gradients
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
13
80
0
25 Jun 2019
Intriguing properties of adversarial training at scale
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
8
68
0
10 Jun 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
30
204
0
06 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
16
63
0
03 Jun 2019
The Principle of Unchanged Optimality in Reinforcement Learning
  Generalization
The Principle of Unchanged Optimality in Reinforcement Learning Generalization
A. Irpan
Xingyou Song
OffRL
25
7
0
02 Jun 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
27
348
0
25 May 2019
Zero-shot Knowledge Transfer via Adversarial Belief Matching
Zero-shot Knowledge Transfer via Adversarial Belief Matching
P. Micaelli
Amos Storkey
17
227
0
23 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
19
374
0
30 Apr 2019
Previous
1234567
Next