ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03151
  4. Cited By
Unrestricted Permutation forces Extrapolation: Variable Importance
  Requires at least One More Model, or There Is No Free Variable Importance

Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance

1 May 2019
Giles Hooker
L. Mentch
Siyu Zhou
ArXivPDFHTML

Papers citing "Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance"

50 / 59 papers shown
Title
Suboptimal Shapley Value Explanations
Suboptimal Shapley Value Explanations
Xiaolei Lu
FAtt
63
0
0
17 Feb 2025
How Your Location Relates to Health: Variable Importance and Interpretable Machine Learning for Environmental and Sociodemographic Data
Ishaan Maitra
Raymond Lin
Eric Chen
J. Donnelly
Sanja Šćepanović
Cynthia Rudin
26
1
0
03 Jan 2025
Targeted Learning for Variable Importance
Targeted Learning for Variable Importance
Xiaohan Wang
Yunzhe Zhou
Giles Hooker
28
0
0
04 Nov 2024
Disentangling Interactions and Dependencies in Feature Attribution
Disentangling Interactions and Dependencies in Feature Attribution
Gunnar König
Eric Günther
Ulrike von Luxburg
FAtt
53
1
0
31 Oct 2024
Global Censored Quantile Random Forest
Global Censored Quantile Random Forest
Siyu Zhou
Limin Peng
16
0
0
16 Oct 2024
Multi forests: Variable importance for multi-class outcomes
Multi forests: Variable importance for multi-class outcomes
Roman Hornung
Alexander Hapfelmeier
26
1
0
13 Sep 2024
TrIM: Transformed Iterative Mondrian Forests for Gradient-based
  Dimension Reduction and High-Dimensional Regression
TrIM: Transformed Iterative Mondrian Forests for Gradient-based Dimension Reduction and High-Dimensional Regression
Ricardo Baptista
Eliza O'Reilly
Yangxinyu Xie
27
2
0
13 Jul 2024
Position: A Call to Action for a Human-Centered AutoML Paradigm
Position: A Call to Action for a Human-Centered AutoML Paradigm
Marius Lindauer
Florian Karl
A. Klier
Julia Moosbauer
Alexander Tornede
Andreas Mueller
Frank Hutter
Matthias Feurer
Bernd Bischl
36
6
0
05 Jun 2024
Variable importance measure for spatial machine learning models with
  application to air pollution exposure prediction
Variable importance measure for spatial machine learning models with application to air pollution exposure prediction
Si Cheng
M. Blanco
L. Sheppard
Ali Shojaie
Adam Szpiro
24
0
0
04 Jun 2024
Regression Trees Know Calculus
Regression Trees Know Calculus
Nathan Wycoff
24
0
0
22 May 2024
Why do explanations fail? A typology and discussion on failures in XAI
Why do explanations fail? A typology and discussion on failures in XAI
Clara Bove
Thibault Laugel
Marie-Jeanne Lesot
C. Tijus
Marcin Detyniecki
26
2
0
22 May 2024
Why You Should Not Trust Interpretations in Machine Learning:
  Adversarial Attacks on Partial Dependence Plots
Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
Xi Xin
Giles Hooker
Fei Huang
AAML
38
6
0
29 Apr 2024
SIDEs: Separating Idealization from Deceptive Explanations in xAI
SIDEs: Separating Idealization from Deceptive Explanations in xAI
Emily Sullivan
44
2
0
25 Apr 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
47
2
0
25 Apr 2024
A Guide to Feature Importance Methods for Scientific Inference
A Guide to Feature Importance Methods for Scientific Inference
F. K. Ewald
Ludwig Bothmann
Marvin N. Wright
B. Bischl
Giuseppe Casalicchio
Gunnar Konig
28
10
0
19 Apr 2024
Beyond development: Challenges in deploying machine learning models for
  structural engineering applications
Beyond development: Challenges in deploying machine learning models for structural engineering applications
M. Z. Esteghamati
Brennan Bean
Henry V. Burton
M. Z. Naser
AI4CE
23
1
0
18 Apr 2024
Interpretable Machine Learning for Survival Analysis
Interpretable Machine Learning for Survival Analysis
Sophie Hanna Langbein
Mateusz Krzyzinski
Mikolaj Spytek
Hubert Baniecki
P. Biecek
Marvin N. Wright
43
2
0
15 Mar 2024
Challenges in Variable Importance Ranking Under Correlation
Challenges in Variable Importance Ranking Under Correlation
Annie Liang
T. Jemielita
Andy Liaw
V. Svetnik
Lingkang Huang
Richard Baumgartner
Jason M. Klusowski
25
1
0
05 Feb 2024
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI
  Benchmarks
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
AAML
61
20
0
12 Jan 2024
Factor Importance Ranking and Selection using Total Indices
Factor Importance Ranking and Selection using Total Indices
Chaofan Huang
V. R. Joseph
13
1
0
01 Jan 2024
Variable Importance in High-Dimensional Settings Requires Grouping
Variable Importance in High-Dimensional Settings Requires Grouping
Ahmad Chamma
Bertrand Thirion
D. Engemann
32
3
0
18 Dec 2023
On the Relationship Between Interpretability and Explainability in
  Machine Learning
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
24
0
0
20 Nov 2023
The Disagreement Problem in Faithfulness Metrics
The Disagreement Problem in Faithfulness Metrics
Brian Barr
Noah Fatsi
Leif Hancox-Li
Peter Richter
Daniel Proano
Caleb Mok
36
4
0
13 Nov 2023
Using Slisemap to interpret physical data
Using Slisemap to interpret physical data
Lauri Seppäläinen
Anton Björklund
V. Besel
Kai Puolamäki
19
1
0
24 Oct 2023
Model-agnostic variable importance for predictive uncertainty: an
  entropy-based approach
Model-agnostic variable importance for predictive uncertainty: an entropy-based approach
Danny Wood
Theodore Papamarkou
Matt Benatan
Richard Allmendinger
FAtt
UD
30
3
0
19 Oct 2023
MMD-based Variable Importance for Distributional Random Forest
MMD-based Variable Importance for Distributional Random Forest
Clément Bénard
Jeffrey Näf
Julie Josse
34
0
0
18 Oct 2023
Stabilizing Estimates of Shapley Values with Control Variates
Stabilizing Estimates of Shapley Values with Control Variates
Jeremy Goldwasser
Giles Hooker
FAtt
24
4
0
11 Oct 2023
The Blame Problem in Evaluating Local Explanations, and How to Tackle it
The Blame Problem in Evaluating Local Explanations, and How to Tackle it
Amir Hossein Akhavan Rahnama
ELM
FAtt
28
4
0
05 Oct 2023
The Rashomon Importance Distribution: Getting RID of Unstable, Single
  Model-based Variable Importance
The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance
J. Donnelly
Srikar Katta
Cynthia Rudin
E. Browne
FAtt
14
15
0
24 Sep 2023
Statistically Valid Variable Importance Assessment through Conditional
  Permutations
Statistically Valid Variable Importance Assessment through Conditional Permutations
Ahmad Chamma
D. Engemann
Bertrand Thirion
11
10
0
14 Sep 2023
survex: an R package for explaining machine learning survival models
survex: an R package for explaining machine learning survival models
Mikolaj Spytek
Mateusz Krzyzinski
Sophie Hanna Langbein
Hubert Baniecki
Marvin N. Wright
P. Biecek
31
16
0
30 Aug 2023
Variable importance for causal forests: breaking down the heterogeneity
  of treatment effects
Variable importance for causal forests: breaking down the heterogeneity of treatment effects
Clément Bénard
Julie Josse
CML
31
4
0
07 Aug 2023
Shapley Sets: Feature Attribution via Recursive Function Decomposition
Shapley Sets: Feature Attribution via Recursive Function Decomposition
Torty Sivill
Peter A. Flach
FAtt
TDI
11
1
0
04 Jul 2023
Can predictive models be used for causal inference?
Can predictive models be used for causal inference?
Maximilian Pichler
F. Hartig
OOD
CML
24
3
0
18 Jun 2023
Explaining Predictive Uncertainty with Information Theoretic Shapley
  Values
Explaining Predictive Uncertainty with Information Theoretic Shapley Values
David S. Watson
Joshua O'Hara
Niek Tax
Richard Mudd
Ido Guy
TDI
FAtt
26
21
0
09 Jun 2023
Dear XAI Community, We Need to Talk! Fundamental Misconceptions in
  Current XAI Research
Dear XAI Community, We Need to Talk! Fundamental Misconceptions in Current XAI Research
Timo Freiesleben
Gunnar Konig
23
19
0
07 Jun 2023
Asymmetric feature interaction for interpreting model predictions
Asymmetric feature interaction for interpreting model predictions
Xiaolei Lu
Jianghong Ma
Haode Zhang
FAtt
11
4
0
12 May 2023
Opening the random forest black box by the analysis of the mutual impact
  of features
Opening the random forest black box by the analysis of the mutual impact of features
Luca Voges
Lukas C. Jarren
Stephan Seifert
11
13
0
05 Apr 2023
Feature Importance: A Closer Look at Shapley Values and LOCO
Feature Importance: A Closer Look at Shapley Values and LOCO
I. Verdinelli
Larry A. Wasserman
FAtt
TDI
23
20
0
10 Mar 2023
Individualized and Global Feature Attributions for Gradient Boosted
  Trees in the Presence of $\ell_2$ Regularization
Individualized and Global Feature Attributions for Gradient Boosted Trees in the Presence of ℓ2\ell_2ℓ2​ Regularization
Qingyao Sun
26
2
0
08 Nov 2022
Abstract Interpretation-Based Feature Importance for SVMs
Abstract Interpretation-Based Feature Importance for SVMs
Abhinanda Pal
Francesco Ranzato
Caterina Urban
Marco Zanella
FAtt
16
0
0
22 Oct 2022
DALE: Differential Accumulated Local Effects for efficient and accurate
  global explanations
DALE: Differential Accumulated Local Effects for efficient and accurate global explanations
Vasilis Gkolemis
Theodore Dalamagas
Christos Diou
11
12
0
10 Oct 2022
Conditional Feature Importance for Mixed Data
Conditional Feature Importance for Mixed Data
Kristin Blesch
David S. Watson
Marvin N. Wright
42
7
0
06 Oct 2022
Algorithm-Agnostic Interpretations for Clustering
Algorithm-Agnostic Interpretations for Clustering
Christian A. Scholbeck
Henri Funk
Giuseppe Casalicchio
18
0
0
21 Sep 2022
Incremental Permutation Feature Importance (iPFI): Towards Online
  Explanations on Data Streams
Incremental Permutation Feature Importance (iPFI): Towards Online Explanations on Data Streams
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
19
20
0
05 Sep 2022
Accelerated and interpretable oblique random survival forests
Accelerated and interpretable oblique random survival forests
Byron C. Jaeger
Sawyer Welden
K. Lenoir
J. Speiser
M. Segar
A. Pandey
N. Pajewski
14
15
0
01 Aug 2022
BASED-XAI: Breaking Ablation Studies Down for Explainable Artificial
  Intelligence
BASED-XAI: Breaking Ablation Studies Down for Explainable Artificial Intelligence
Isha Hameed
Samuel Sharpe
Daniel Barcklow
Justin Au-yeung
Sahil Verma
Jocelyn Huang
Brian Barr
C. B. Bruss
30
14
0
12 Jul 2022
Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI
  Evaluation Methods into an Interactive and Multi-dimensional Benchmark
Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI Evaluation Methods into an Interactive and Multi-dimensional Benchmark
Mohamed Karim Belaid
Eyke Hüllermeier
Maximilian Rabus
Ralf Krestel
ELM
16
0
0
08 Jun 2022
Sequential Permutation Testing of Random Forest Variable Importance
  Measures
Sequential Permutation Testing of Random Forest Variable Importance Measures
Alexander Hapfelmeier
R. Hornung
Bernhard Haller
15
15
0
02 Jun 2022
Supervised Learning and Model Analysis with Compositional Data
Supervised Learning and Model Analysis with Compositional Data
Shimeng Huang
Elisabeth Ailer
Niki Kilbertus
Niklas Pfister
29
5
0
15 May 2022
12
Next