Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04101
Cited By
Biologically plausible deep learning -- but how far can we go with shallow networks?
27 February 2019
Bernd Illing
W. Gerstner
Johanni Brea
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Biologically plausible deep learning -- but how far can we go with shallow networks?"
19 / 19 papers shown
Title
From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
Ludovico Iannello
Luca Ciampi
Gabriele Lagani
Fabrizio Tonelli
Eleonora Crocco
Lucio Maria Calcagnile
Angelo Di Garbo
F. Cremisi
Giuseppe Amato
49
0
0
06 May 2025
Synaptic Plasticity Models and Bio-Inspired Unsupervised Deep Learning: A Survey
Gabriele Lagani
Fabrizio Falchi
Claudio Gennaro
Giuseppe Amato
AAML
43
6
0
30 Jul 2023
Synaptic Dynamics Realize First-order Adaptive Learning and Weight Symmetry
Yukun Yang
Peng Li
ODL
38
1
0
01 Dec 2022
Multi-level Data Representation For Training Deep Helmholtz Machines
J. M. Ramos
Luis Sa-Couto
Andreas Wichert
18
0
0
26 Oct 2022
Brain-like combination of feedforward and recurrent network components achieves prototype extraction and robust pattern recognition
Naresh B. Ravichandran
A. Lansner
Pawel Herman
32
4
0
30 Jun 2022
BioLeaF: A Bio-plausible Learning Framework for Training of Spiking Neural Networks
Yukun Yang
Peng Li
27
3
0
14 Nov 2021
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through Regularization
Justus F. Hübotter
Pablo Lanillos
Jakub M. Tomczak
16
3
0
22 Sep 2021
BioLCNet: Reward-modulated Locally Connected Spiking Neural Networks
Hafez Ghaemi
Erfan Mirzaei
Mahbod Nouri
Saeed Reza Kheradpisheh
16
2
0
12 Sep 2021
SoftHebb: Bayesian Inference in Unsupervised Hebbian Soft Winner-Take-All Networks
Timoleon Moraitis
Dmitry Toichkin
Adrien Journé
Yansong Chua
Qinghai Guo
AAML
BDL
68
28
0
12 Jul 2021
Using brain inspired principles to unsupervisedly learn good representations for visual pattern recognition
Luis Sa-Couto
Andreas Wichert
SSL
OOD
14
9
0
30 Apr 2021
Reverse Differentiation via Predictive Coding
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
30
26
0
08 Mar 2021
Predictive Coding Can Do Exact Backpropagation on Convolutional and Recurrent Neural Networks
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
27
24
0
05 Mar 2021
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
24
34
0
12 Jun 2020
Brain-like approaches to unsupervised learning of hidden representations -- a comparative study
Naresh B. Ravichandran
A. Lansner
Pawel Herman
BDL
SSL
14
12
0
06 May 2020
Binary autoencoder with random binary weights
V. Osaulenko
MQ
18
3
0
30 Apr 2020
Learning representations in Bayesian Confidence Propagation neural networks
Naresh B. Ravichandran
A. Lansner
Pawel Herman
BDL
SSL
12
14
0
27 Mar 2020
Fast and energy-efficient neuromorphic deep learning with first-spike times
Julian Goltz
Laura Kriener
A. Baumbach
Sebastian Billaudelle
O. Breitwieser
...
Á. F. Kungl
Walter Senn
Johannes Schemmel
K. Meier
Mihai A. Petrovici
35
126
0
24 Dec 2019
Long short-term memory and learning-to-learn in networks of spiking neurons
G. Bellec
Darjan Salaj
Anand Subramoney
Robert Legenstein
Wolfgang Maass
121
481
0
26 Mar 2018
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
135
258
0
16 Dec 2016
1