ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.04101
  4. Cited By
Biologically plausible deep learning -- but how far can we go with
  shallow networks?

Biologically plausible deep learning -- but how far can we go with shallow networks?

27 February 2019
Bernd Illing
W. Gerstner
Johanni Brea
ArXivPDFHTML

Papers citing "Biologically plausible deep learning -- but how far can we go with shallow networks?"

19 / 19 papers shown
Title
From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
Ludovico Iannello
Luca Ciampi
Gabriele Lagani
Fabrizio Tonelli
Eleonora Crocco
Lucio Maria Calcagnile
Angelo Di Garbo
F. Cremisi
Giuseppe Amato
49
0
0
06 May 2025
Synaptic Plasticity Models and Bio-Inspired Unsupervised Deep Learning:
  A Survey
Synaptic Plasticity Models and Bio-Inspired Unsupervised Deep Learning: A Survey
Gabriele Lagani
Fabrizio Falchi
Claudio Gennaro
Giuseppe Amato
AAML
43
6
0
30 Jul 2023
Synaptic Dynamics Realize First-order Adaptive Learning and Weight
  Symmetry
Synaptic Dynamics Realize First-order Adaptive Learning and Weight Symmetry
Yukun Yang
Peng Li
ODL
38
1
0
01 Dec 2022
Multi-level Data Representation For Training Deep Helmholtz Machines
Multi-level Data Representation For Training Deep Helmholtz Machines
J. M. Ramos
Luis Sa-Couto
Andreas Wichert
18
0
0
26 Oct 2022
Brain-like combination of feedforward and recurrent network components
  achieves prototype extraction and robust pattern recognition
Brain-like combination of feedforward and recurrent network components achieves prototype extraction and robust pattern recognition
Naresh B. Ravichandran
A. Lansner
Pawel Herman
32
4
0
30 Jun 2022
BioLeaF: A Bio-plausible Learning Framework for Training of Spiking
  Neural Networks
BioLeaF: A Bio-plausible Learning Framework for Training of Spiking Neural Networks
Yukun Yang
Peng Li
27
3
0
14 Nov 2021
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
  through Regularization
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through Regularization
Justus F. Hübotter
Pablo Lanillos
Jakub M. Tomczak
16
3
0
22 Sep 2021
BioLCNet: Reward-modulated Locally Connected Spiking Neural Networks
BioLCNet: Reward-modulated Locally Connected Spiking Neural Networks
Hafez Ghaemi
Erfan Mirzaei
Mahbod Nouri
Saeed Reza Kheradpisheh
16
2
0
12 Sep 2021
SoftHebb: Bayesian Inference in Unsupervised Hebbian Soft
  Winner-Take-All Networks
SoftHebb: Bayesian Inference in Unsupervised Hebbian Soft Winner-Take-All Networks
Timoleon Moraitis
Dmitry Toichkin
Adrien Journé
Yansong Chua
Qinghai Guo
AAML
BDL
68
28
0
12 Jul 2021
Using brain inspired principles to unsupervisedly learn good
  representations for visual pattern recognition
Using brain inspired principles to unsupervisedly learn good representations for visual pattern recognition
Luis Sa-Couto
Andreas Wichert
SSL
OOD
14
9
0
30 Apr 2021
Reverse Differentiation via Predictive Coding
Reverse Differentiation via Predictive Coding
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
30
26
0
08 Mar 2021
Predictive Coding Can Do Exact Backpropagation on Convolutional and
  Recurrent Neural Networks
Predictive Coding Can Do Exact Backpropagation on Convolutional and Recurrent Neural Networks
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
27
24
0
05 Mar 2021
Kernelized information bottleneck leads to biologically plausible
  3-factor Hebbian learning in deep networks
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
24
34
0
12 Jun 2020
Brain-like approaches to unsupervised learning of hidden representations
  -- a comparative study
Brain-like approaches to unsupervised learning of hidden representations -- a comparative study
Naresh B. Ravichandran
A. Lansner
Pawel Herman
BDL
SSL
14
12
0
06 May 2020
Binary autoencoder with random binary weights
Binary autoencoder with random binary weights
V. Osaulenko
MQ
18
3
0
30 Apr 2020
Learning representations in Bayesian Confidence Propagation neural
  networks
Learning representations in Bayesian Confidence Propagation neural networks
Naresh B. Ravichandran
A. Lansner
Pawel Herman
BDL
SSL
12
14
0
27 Mar 2020
Fast and energy-efficient neuromorphic deep learning with first-spike
  times
Fast and energy-efficient neuromorphic deep learning with first-spike times
Julian Goltz
Laura Kriener
A. Baumbach
Sebastian Billaudelle
O. Breitwieser
...
Á. F. Kungl
Walter Senn
Johannes Schemmel
K. Meier
Mihai A. Petrovici
35
126
0
24 Dec 2019
Long short-term memory and learning-to-learn in networks of spiking
  neurons
Long short-term memory and learning-to-learn in networks of spiking neurons
G. Bellec
Darjan Salaj
Anand Subramoney
Robert Legenstein
Wolfgang Maass
121
481
0
26 Mar 2018
Neuromorphic Deep Learning Machines
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
135
258
0
16 Dec 2016
1