ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06088
  4. Cited By
Neural-Symbolic Computing: An Effective Methodology for Principled
  Integration of Machine Learning and Reasoning

Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning

15 May 2019
Artur Garcez
Marco Gori
Luís C. Lamb
Luciano Serafini
Michael Spranger
Son N. Tran
    NAI
ArXivPDFHTML

Papers citing "Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning"

28 / 28 papers shown
Title
Towards Responsible and Trustworthy Educational Data Mining: Comparing Symbolic, Sub-Symbolic, and Neural-Symbolic AI Methods
Towards Responsible and Trustworthy Educational Data Mining: Comparing Symbolic, Sub-Symbolic, and Neural-Symbolic AI Methods
Danial Hooshyar
Eve Kikas
Yeongwook Yang
Gustav Šír
Raija Hamalainen
T. Karkkainen
Roger Azevedo
51
1
0
01 Apr 2025
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
Leander Kurscheidt
Paolo Morettin
Roberto Sebastiani
Andrea Passerini
Antonio Vergari
55
0
0
25 Mar 2025
Combinatorial Optimization via LLM-driven Iterated Fine-tuning
Pranjal Awasthi
Sreenivas Gollapudi
Ravi Kumar
Kamesh Munagala
63
0
0
10 Mar 2025
Convex and Bilevel Optimization for Neuro-Symbolic Inference and
  Learning
Convex and Bilevel Optimization for Neuro-Symbolic Inference and Learning
Charles Dickens
Changyu Gao
Connor Pryor
Stephen J. Wright
Lise Getoor
24
3
0
17 Jan 2024
Injecting Logical Constraints into Neural Networks via Straight-Through
  Estimators
Injecting Logical Constraints into Neural Networks via Straight-Through Estimators
Zhun Yang
Joohyung Lee
Chi-youn Park
14
18
0
10 Jul 2023
Scalable Neural-Probabilistic Answer Set Programming
Scalable Neural-Probabilistic Answer Set Programming
Arseny Skryagin
Daniel Ochs
D. Dhami
Kristian Kersting
24
5
0
14 Jun 2023
ASPER: Answer Set Programming Enhanced Neural Network Models for Joint
  Entity-Relation Extraction
ASPER: Answer Set Programming Enhanced Neural Network Models for Joint Entity-Relation Extraction
Trung Hoang Le
H. Cao
Tran Cao Son
15
1
0
24 May 2023
Logic of Differentiable Logics: Towards a Uniform Semantics of DL
Logic of Differentiable Logics: Towards a Uniform Semantics of DL
Natalia Slusarz
Ekaterina Komendantskaya
M. Daggitt
Rob Stewart
Kathrin Stark
17
17
0
19 Mar 2023
Symbolic Visual Reinforcement Learning: A Scalable Framework with
  Object-Level Abstraction and Differentiable Expression Search
Symbolic Visual Reinforcement Learning: A Scalable Framework with Object-Level Abstraction and Differentiable Expression Search
Wenqing Zheng
S. Sharan
Zhiwen Fan
Kevin Wang
Yihan Xi
Zhangyang Wang
53
9
0
30 Dec 2022
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
22
1
0
22 Nov 2022
Greybox XAI: a Neural-Symbolic learning framework to produce
  interpretable predictions for image classification
Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification
Adrien Bennetot
Gianni Franchi
Javier Del Ser
Raja Chatila
Natalia Díaz Rodríguez
AAML
25
29
0
26 Sep 2022
Reduced Implication-bias Logic Loss for Neuro-Symbolic Learning
Reduced Implication-bias Logic Loss for Neuro-Symbolic Learning
Haoyuan He
Wang-Zhou Dai
Ming Li
AI4CE
29
2
0
14 Aug 2022
Neuro-Symbolic Learning: Principles and Applications in Ophthalmology
Neuro-Symbolic Learning: Principles and Applications in Ophthalmology
Muhammad Hassan
Haifei Guan
Aikaterini Melliou
Yuqi Wang
Qianhui Sun
...
Qi Huang
Jiefu Tan
Qinwang Xing
Peiwu Qin
Dongmei Yu
NAI
19
14
0
31 Jul 2022
An Algebraic Approach to Learning and Grounding
An Algebraic Approach to Learning and Grounding
Johanna Björklund
Adam Dahlgren Lindström
F. Drewes
15
0
0
06 Apr 2022
Neuro-Symbolic Verification of Deep Neural Networks
Neuro-Symbolic Verification of Deep Neural Networks
Xuan Xie
Kristian Kersting
Daniel Neider
AAML
NAI
13
15
0
02 Mar 2022
Is Neuro-Symbolic AI Meeting its Promise in Natural Language Processing?
  A Structured Review
Is Neuro-Symbolic AI Meeting its Promise in Natural Language Processing? A Structured Review
Kyle Hamilton
Aparna Nayak
Bojan Bozic
Luca Longo
NAI
18
57
0
24 Feb 2022
HAKE: A Knowledge Engine Foundation for Human Activity Understanding
HAKE: A Knowledge Engine Foundation for Human Activity Understanding
Yong-Lu Li
Xinpeng Liu
Xiaoqian Wu
Yizhuo Li
Zuoyu Qiu
Liang Xu
Yue Xu
Haoshu Fang
Cewu Lu
16
38
0
14 Feb 2022
Neuro-Symbolic Forward Reasoning
Neuro-Symbolic Forward Reasoning
Hikaru Shindo
D. Dhami
Kristian Kersting
NAI
LRM
25
22
0
18 Oct 2021
Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable
  and Advisable AI Systems
Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable and Advisable AI Systems
Subbarao Kambhampati
S. Sreedharan
Mudit Verma
Yantian Zha
L. Guan
32
47
0
21 Sep 2021
Faster-LTN: a neuro-symbolic, end-to-end object detection architecture
Faster-LTN: a neuro-symbolic, end-to-end object detection architecture
Francesco Manigrasso
Filomeno Davide Miro
Lia Morra
Fabrizio Lamberti
ObjD
6
14
0
05 Jul 2021
Logic-Driven Context Extension and Data Augmentation for Logical
  Reasoning of Text
Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text
Siyuan Wang
Wanjun Zhong
Duyu Tang
Zhongyu Wei
Zhihao Fan
Daxin Jiang
Ming Zhou
Nan Duan
NAI
24
70
0
08 May 2021
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep
  learning representations with expert knowledge graphs: the MonuMAI cultural
  heritage use case
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
S. Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
45
76
0
24 Apr 2021
A conditional, a fuzzy and a probabilistic interpretation of
  self-organising maps
A conditional, a fuzzy and a probabilistic interpretation of self-organising maps
Laura Giordano
Valentina Gliozzi
Daniele Theseider Dupré
AI4CE
17
23
0
11 Mar 2021
Differentiable Inductive Logic Programming for Structured Examples
Differentiable Inductive Logic Programming for Structured Examples
Hikaru Shindo
Masaaki Nishino
Akihiro Yamamoto
NAI
32
29
0
02 Mar 2021
Right for the Right Concept: Revising Neuro-Symbolic Concepts by
  Interacting with their Explanations
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations
Wolfgang Stammer
P. Schramowski
Kristian Kersting
FAtt
14
106
0
25 Nov 2020
Deep Learning for Abstract Argumentation Semantics
Deep Learning for Abstract Argumentation Semantics
Dennis Craandijk
Floris Bex
SSeg
6
30
0
15 Jul 2020
Symbolic Logic meets Machine Learning: A Brief Survey in Infinite
  Domains
Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains
Vaishak Belle
NAI
LRM
8
36
0
15 Jun 2020
Logic Tensor Networks for Semantic Image Interpretation
Logic Tensor Networks for Semantic Image Interpretation
Ivan Donadello
Luciano Serafini
Artur Garcez
54
209
0
24 May 2017
1