Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1905.07088
Cited By
v1
v2 (latest)
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
17 May 2019
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sliced Score Matching: A Scalable Approach to Density and Score Estimation"
50 / 333 papers shown
Title
Provable Statistical Rates for Consistency Diffusion Models
Zehao Dou
Minshuo Chen
Mengdi Wang
Zhuoran Yang
DiffM
258
3
0
23 Jun 2024
Rethinking the Diffusion Models for Numerical Tabular Data Imputation from the Perspective of Wasserstein Gradient Flow
Zhichao Chen
Haoxuan Li
Fangyikang Wang
Odin Zhang
Hu Xu
Xiaoyu Jiang
Zhihuan Song
Eric H. Wang
DiffM
181
4
0
22 Jun 2024
Neural Residual Diffusion Models for Deep Scalable Vision Generation
Neural Information Processing Systems (NeurIPS), 2024
Zhiyuan Ma
Liangliang Zhao
Biqing Qi
Bowen Zhou
DiffM
389
7
0
19 Jun 2024
Variational Distillation of Diffusion Policies into Mixture of Experts
Neural Information Processing Systems (NeurIPS), 2024
Hongyi Zhou
Denis Blessing
Ge Li
Onur Celik
Xiaogang Jia
Gerhard Neumann
Rudolf Lioutikov
DiffM
236
7
0
18 Jun 2024
Score-fPINN: Fractional Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck-Levy Equations
Zheyuan Hu
Zhongqiang Zhang
George Karniadakis
Kenji Kawaguchi
166
2
0
17 Jun 2024
Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency
Maor Dikter
Tsachi Blau
Chaim Baskin
283
0
0
13 Jun 2024
Operator-Informed Score Matching for Markov Diffusion Models
Zheyang Shen
Huihui Wang
Marina Riabiz
Chris J. Oates
DiffM
376
0
0
13 Jun 2024
Linear Causal Representation Learning from Unknown Multi-node Interventions
Neural Information Processing Systems (NeurIPS), 2024
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
183
5
0
09 Jun 2024
Diffusion Models in
De
Novo
\textit{De Novo}
De Novo
Drug Design
Journal of Chemical Information and Modeling (JCIM), 2024
Amira Alakhdar
Barnabas Poczos
Newell Washburn
MedIm
175
54
0
07 Jun 2024
On the Hardness of Sampling from Mixture Distributions via Langevin Dynamics
Xiwei Cheng
Kexin Fu
Farzan Farnia
451
0
0
04 Jun 2024
Sifting through the Noise: A Survey of Diffusion Probabilistic Models and Their Applications to Biomolecules
Trevor Norton
Debswapna Bhattacharya
MedIm
DiffM
221
2
0
31 May 2024
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
229
7
0
29 May 2024
Transfer Learning for Diffusion Models
Yidong Ouyang
Liyan Xie
Hongyuan Zha
Guang Cheng
DiffM
260
7
0
27 May 2024
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Yuchen Zhu
Tianrong Chen
Lingkai Kong
Evangelos A. Theodorou
Molei Tao
DiffM
261
13
0
25 May 2024
Score-based generative models are provably robust: an uncertainty quantification perspective
Nikiforos Mimikos-Stamatopoulos
Benjamin J. Zhang
Markos A. Katsoulakis
DiffM
232
11
0
24 May 2024
Model Free Prediction with Uncertainty Assessment
Yuling Jiao
Lican Kang
Jin Liu
Heng Peng
Heng Zuo
DiffM
317
2
0
21 May 2024
Distilling Diffusion Models into Conditional GANs
European Conference on Computer Vision (ECCV), 2024
Minguk Kang
Richard Zhang
Connelly Barnes
Sylvain Paris
Suha Kwak
Jaesik Park
Eli Shechtman
Jun-Yan Zhu
Taesung Park
746
72
0
09 May 2024
Unifying Bayesian Flow Networks and Diffusion Models through Stochastic Differential Equations
Kaiwen Xue
Yuhao Zhou
Shen Nie
Xu Min
Xiaolu Zhang
Jun Zhou
Chongxuan Li
DiffM
261
21
0
24 Apr 2024
Gradient Guidance for Diffusion Models: An Optimization Perspective
Yingqing Guo
Hui Yuan
Yukang Yang
Minshuo Chen
Mengdi Wang
253
45
0
23 Apr 2024
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLM
MedIm
DiffM
276
82
0
11 Apr 2024
Diffusion Model for Data-Driven Black-Box Optimization
Zihao Li
Hui Yuan
Kaixuan Huang
Chengzhuo Ni
Yinyu Ye
Minshuo Chen
Mengdi Wang
DiffM
231
19
0
20 Mar 2024
Fine-tuning of diffusion models via stochastic control: entropy regularization and beyond
Wenpin Tang
Fuzhong Zhou
359
27
0
10 Mar 2024
Improving Adversarial Energy-Based Model via Diffusion Process
Cong Geng
Tian Han
Peng-Tao Jiang
Hao Zhang
Jinwei Chen
Søren Hauberg
Yue Liu
DiffM
422
5
0
04 Mar 2024
Generative AI in Vision: A Survey on Models, Metrics and Applications
Gaurav Raut
Apoorv Singh
VLM
MedIm
202
12
0
26 Feb 2024
Generative Modelling with Tensor Train approximations of Hamilton--Jacobi--Bellman equations
David Sommer
Robert Gruhlke
Max Kirstein
Martin Eigel
Claudia Schillings
132
4
0
23 Feb 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
119
3
0
23 Feb 2024
Classification Diffusion Models: Revitalizing Density Ratio Estimation
Shahar Yadin
Noam Elata
T. Michaeli
DiffM
262
2
0
15 Feb 2024
Optimal score estimation via empirical Bayes smoothing
Andre Wibisono
Yihong Wu
Kaylee Yingxi Yang
262
40
0
12 Feb 2024
Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck Equations
Zheyuan Hu
Zhongqiang Zhang
George Karniadakis
Kenji Kawaguchi
197
18
0
12 Feb 2024
Score-based Diffusion Models via Stochastic Differential Equations -- a Technical Tutorial
Statistics Survey (Stat. Surv.), 2024
Wenpin Tang
Hanyang Zhao
DiffM
379
41
0
12 Feb 2024
Wasserstein proximal operators describe score-based generative models and resolve memorization
Benjamin J. Zhang
Siting Liu
Wuchen Li
Markos A. Katsoulakis
Stanley J. Osher
DiffM
244
14
0
09 Feb 2024
Stable Autonomous Flow Matching
Christopher Iliffe Sprague
Arne Elofsson
Hossein Azizpour
162
1
0
08 Feb 2024
SDEMG: Score-based Diffusion Model for Surface Electromyographic Signal Denoising
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2024
Yu-Tung Liu
Kuan-Chen Wang
Kai-Chun Liu
Sheng-Yu Peng
Yu Tsao
DiffM
MedIm
190
9
0
06 Feb 2024
Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization
Fangzhao Zhang
Mert Pilanci
DiffM
304
5
0
03 Feb 2024
Convergence Analysis for General Probability Flow ODEs of Diffusion Models in Wasserstein Distances
Xuefeng Gao
Lingjiong Zhu
276
37
0
31 Jan 2024
Contractive Diffusion Probabilistic Models
Wenpin Tang
Hanyang Zhao
DiffM
275
22
0
23 Jan 2024
Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning
AAAI Conference on Artificial Intelligence (AAAI), 2024
Zizhao Wang
Caroline Wang
Xuesu Xiao
Yuke Zhu
Peter Stone
OffRL
125
9
0
23 Jan 2024
The Rise of Diffusion Models in Time-Series Forecasting
Caspar Meijer
Lydia Y. Chen
DiffM
AI4TS
250
24
0
05 Jan 2024
From Function to Distribution Modeling: A PAC-Generative Approach to Offline Optimization
Qiang Zhang
Ruida Zhou
Yang Shen
Tie Liu
OffRL
267
1
0
04 Jan 2024
Diffusion Models, Image Super-Resolution And Everything: A Survey
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024
Brian B. Moser
Arundhati S. Shanbhag
Federico Raue
Stanislav Frolov
Sebastián M. Palacio
Andreas Dengel
426
96
0
01 Jan 2024
Taming Mode Collapse in Score Distillation for Text-to-3D Generation
Computer Vision and Pattern Recognition (CVPR), 2023
Peihao Wang
Dejia Xu
Zhiwen Fan
Dilin Wang
Sreyas Mohan
...
Rakesh Ranjan
Yilei Li
Qiang Liu
Zinan Lin
Vikas Chandra
DiffM
289
40
0
31 Dec 2023
Investigating the Design Space of Diffusion Models for Speech Enhancement
Philippe Gonzalez
Zheng-Hua Tan
Jan Østergaard
Jesper Jensen
T. S. Alstrøm
Tobias May
DiffM
239
19
0
07 Dec 2023
DPHMs: Diffusion Parametric Head Models for Depth-based Tracking
Computer Vision and Pattern Recognition (CVPR), 2023
Jiapeng Tang
Angela Dai
Yinyu Nie
Lev Markhasin
Justus Thies
Matthias Niessner
DiffM
533
11
0
02 Dec 2023
DeepCache: Accelerating Diffusion Models for Free
Computer Vision and Pattern Recognition (CVPR), 2023
Xinyin Ma
Gongfan Fang
Xinchao Wang
406
252
0
01 Dec 2023
Leveraging Graph Diffusion Models for Network Refinement Tasks
Puja Trivedi
Ryan Rossi
David Arbour
Tong Yu
Franck Dernoncourt
Sungchul Kim
Nedim Lipka
Namyong Park
Nesreen K. Ahmed
Danai Koutra
DiffM
252
0
0
29 Nov 2023
A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI
Yuheng Fan
Hanxi Liao
Shiqi Huang
Yimin Luo
Huazhu Fu
Haikun Qi
MedIm
460
30
0
19 Nov 2023
SceneScore: Learning a Cost Function for Object Arrangement
Ivan Kapelyukh
Edward Johns
OffRL
DiffM
OCL
216
6
0
14 Nov 2023
Variational Weighting for Kernel Density Ratios
Neural Information Processing Systems (NeurIPS), 2023
Sangwoong Yoon
Frank C. Park
Gunsu S Yun
Iljung Kim
Yung-Kyun Noh
116
0
0
06 Nov 2023
Diffusion Models for Reinforcement Learning: A Survey
Zhengbang Zhu
Hanye Zhao
Haoran He
Yichao Zhong
Shenyu Zhang
Haoquan Guo
Tingting Chen
Weinan Zhang
571
92
0
02 Nov 2023
Scaling Riemannian Diffusion Models
Neural Information Processing Systems (NeurIPS), 2023
Aaron Lou
Minkai Xu
Stefano Ermon
188
12
0
30 Oct 2023
Previous
1
2
3
4
5
6
7
Next