Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1905.07088
Cited By
v1
v2 (latest)
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
17 May 2019
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sliced Score Matching: A Scalable Approach to Density and Score Estimation"
50 / 333 papers shown
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
214
16
0
28 Oct 2023
DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial Purification
Neural Information Processing Systems (NeurIPS), 2023
Mintong Kang
Basel Alomair
Yue Liu
324
48
0
27 Oct 2023
Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling
Neural Information Processing Systems (NeurIPS), 2023
Zhenyu Zhu
Francesco Locatello
Volkan Cevher
239
16
0
27 Oct 2023
Generative Fractional Diffusion Models
Neural Information Processing Systems (NeurIPS), 2023
Gabriel Nobis
Maximilian Springenberg
Marco Aversa
Michael Detzel
Rembert Daems
...
Tolga Birdal
Manfred Opper
Christoph Knochenhauer
Luis Oala
Wojciech Samek
DiffM
318
7
0
26 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Neural Information Processing Systems (NeurIPS), 2023
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
206
13
0
26 Oct 2023
Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution
International Conference on Machine Learning (ICML), 2023
Aaron Lou
Chenlin Meng
Stefano Ermon
DiffM
432
297
0
25 Oct 2023
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Neural Information Processing Systems (NeurIPS), 2023
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
210
12
0
25 Oct 2023
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process
International Conference on Machine Learning (ICML), 2023
Zichong Li
Yanbo Xu
Simiao Zuo
Hao Jiang
Chao Zhang
Tuo Zhao
H. Zha
153
6
0
25 Oct 2023
Good Better Best: Self-Motivated Imitation Learning for noisy Demonstrations
Ye Yuan
Xin Li
Yong Heng
Leiji Zhang
Mingzhong Wang
DiffM
266
3
0
24 Oct 2023
General Identifiability and Achievability for Causal Representation Learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
352
26
0
24 Oct 2023
Diffusion-Model-Assisted Supervised Learning of Generative Models for Density Estimation
Journal of Machine Learning for Modeling and Computing (JMLMC), 2023
Yanfang Liu
Minglei Yang
Zezhong Zhang
Feng Bao
Yanzhao Cao
Guannan Zhang
174
21
0
22 Oct 2023
Improved Techniques for Training Consistency Models
International Conference on Learning Representations (ICLR), 2023
Yang Song
Prafulla Dhariwal
308
298
0
22 Oct 2023
Exponential weight averaging as damped harmonic motion
J. Patsenker
Henry Li
Y. Kluger
179
0
0
20 Oct 2023
STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning Energy-Based Models
Belhal Karimi
Jianwen Xie
Ping Li
DiffM
265
0
0
19 Oct 2023
Denevil: Towards Deciphering and Navigating the Ethical Values of Large Language Models via Instruction Learning
International Conference on Learning Representations (ICLR), 2023
Shitong Duan
Xiaoyuan Yi
Peng Zhang
Tun Lu
Xing Xie
Ning Gu
230
23
0
17 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
368
19
0
05 Oct 2023
Stochastic force inference via density estimation
Victor Chardès
Suryanarayana Maddu
Michael J. Shelley
DiffM
148
6
0
03 Oct 2023
Sampling Multimodal Distributions with the Vanilla Score: Benefits of Data-Based Initialization
International Conference on Learning Representations (ICLR), 2023
Frederic Koehler
T. Vuong
DiffM
SyDa
180
10
0
03 Oct 2023
CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster Image Generation
Computer Vision and Pattern Recognition (CVPR), 2023
Kangfu Mei
M. Delbracio
Hossein Talebi
Zhengzhong Tu
Vishal M. Patel
P. Milanfar
VLM
DiffM
277
29
0
02 Oct 2023
Mirror Diffusion Models for Constrained and Watermarked Generation
Neural Information Processing Systems (NeurIPS), 2023
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
Molei Tao
DiffM
256
34
0
02 Oct 2023
A Unified Framework for Generative Data Augmentation: A Comprehensive Survey
Yunhao Chen
Zihui Yan
Yunjie Zhu
294
5
0
30 Sep 2023
Memory in Plain Sight: Surveying the Uncanny Resemblances of Associative Memories and Diffusion Models
Benjamin Hoover
Hendrik Strobelt
Dmitry Krotov
Judy Hoffman
Z. Kira
Duen Horng Chau
DiffM
281
8
0
28 Sep 2023
Bayesian Cramér-Rao Bound Estimation with Score-Based Models
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Evan Scope Crafts
Xianyang Zhang
Ye Zhao
64
2
0
28 Sep 2023
GraspGF: Learning Score-based Grasping Primitive for Human-assisting Dexterous Grasping
Neural Information Processing Systems (NeurIPS), 2023
Tianhao Wu
Mingdong Wu
Jiyao Zhang
Yunchong Gan
Hao Dong
526
31
0
12 Sep 2023
Score-PA: Score-based 3D Part Assembly
British Machine Vision Conference (BMVC), 2023
Junfeng Cheng
Mingdong Wu
Ruiyuan Zhang
Guanqi Zhan
Chao Wu
Hao Dong
187
11
0
08 Sep 2023
RenAIssance: A Survey into AI Text-to-Image Generation in the Era of Large Model
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Fengxiang Bie
Jianlong Wu
Zhongzhu Zhou
Adam Ghanem
Minjia Zhang
...
Pareesa Ameneh Golnari
David A. Clifton
Yuxiong He
Dacheng Tao
Shuaiwen Leon Song
EGVM
253
55
0
02 Sep 2023
Semi-Implicit Variational Inference via Score Matching
International Conference on Learning Representations (ICLR), 2023
Longlin Yu
Chuxu Zhang
251
18
0
19 Aug 2023
On Estimating the Gradient of the Expected Information Gain in Bayesian Experimental Design
AAAI Conference on Artificial Intelligence (AAAI), 2023
Ziqiao Ao
Jinglai Li
196
4
0
19 Aug 2023
Training Data Protection with Compositional Diffusion Models
Aditya Golatkar
Alessandro Achille
A. Swaminathan
Stefano Soatto
DiffM
215
13
0
02 Aug 2023
Transferable Attack for Semantic Segmentation
Mengqi He
Jing Zhang
Zhaoyuan Yang
Mingyi He
Nick Barnes
Yuchao Dai
213
2
0
31 Jul 2023
Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level Stability and High-Level Behavior
Neural Information Processing Systems (NeurIPS), 2023
Adam Block
Ali Jadbabaie
Daniel Pfrommer
Max Simchowitz
Russ Tedrake
DiffM
495
35
0
27 Jul 2023
Sobolev Space Regularised Pre Density Models
International Conference on Machine Learning (ICML), 2023
Mark Kozdoba
Benny Perets
Shie Mannor
162
1
0
25 Jul 2023
Reward-Directed Conditional Diffusion: Provable Distribution Estimation and Reward Improvement
Neural Information Processing Systems (NeurIPS), 2023
Hui Yuan
Kaixuan Huang
Chengzhuo Ni
Minshuo Chen
Mengdi Wang
DiffM
242
44
0
13 Jul 2023
Energy Discrepancies: A Score-Independent Loss for Energy-Based Models
Neural Information Processing Systems (NeurIPS), 2023
Tobias Schröder
Chinmay Pani
Jen Ning Lim
Yingzhen Li
Sebastian J. Vollmer
Andrew B. Duncan
353
13
0
12 Jul 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Neural Information Processing Systems (NeurIPS), 2023
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
338
18
0
10 Jul 2023
Score-based Conditional Generation with Fewer Labeled Data by Self-calibrating Classifier Guidance
Paul Kuo-Ming Huang
Si-An Chen
Hsuan-Tien Lin
243
1
0
09 Jul 2023
Training Energy-Based Models with Diffusion Contrastive Divergences
Weijian Luo
Hao Jiang
Tianyang Hu
Jiacheng Sun
Hao Sun
Zhihua Zhang
DiffM
291
8
0
04 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
International Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
873
13
0
03 Jul 2023
MissDiff: Training Diffusion Models on Tabular Data with Missing Values
Yidong Ouyang
Liyan Xie
Chongxuan Li
Guang Cheng
DiffM
283
35
0
02 Jul 2023
GenPose: Generative Category-level Object Pose Estimation via Diffusion Models
Neural Information Processing Systems (NeurIPS), 2023
Jiyao Zhang
Min-Yu Wu
Hao Dong
DiffM
312
60
0
18 Jun 2023
Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative Models
Gen Li
Yuting Wei
Yuxin Chen
Yuejie Chi
DiffM
332
81
0
15 Jun 2023
Learning Unnormalized Statistical Models via Compositional Optimization
International Conference on Machine Learning (ICML), 2023
Wei Jiang
Jiayu Qin
Lingyu Wu
Changyou Chen
Tianbao Yang
Lijun Zhang
336
7
0
13 Jun 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Neural Information Processing Systems (NeurIPS), 2023
Weijian Luo
Boya Zhang
Zhihua Zhang
300
13
0
08 Jun 2023
ScoreCL: Augmentation-Adaptive Contrastive Learning via Score-Matching Function
Machine-mediated learning (ML), 2023
Jinyoung Kim
Soonwoo Kwon
Hyojun Go
Yunsung Lee
Seungtaek Choi
Hyun-Gyoon Kim
183
2
0
07 Jun 2023
A Comprehensive Survey on Generative Diffusion Models for Structured Data
Heejoon Koo
To Eun Kim
DiffM
MedIm
235
9
0
07 Jun 2023
On the Design Fundamentals of Diffusion Models: A Survey
Pattern Recognition (Pattern Recogn.), 2023
Ziyi Chang
George Alex Koulieris
Hyung Jin Chang
Hubert P. H. Shum
DiffM
623
79
0
07 Jun 2023
Faster Training of Diffusion Models and Improved Density Estimation via Parallel Score Matching
Etrit Haxholli
Marco Lorenzi
DiffM
73
3
0
05 Jun 2023
Machine Learning Force Fields with Data Cost Aware Training
International Conference on Machine Learning (ICML), 2023
Alexander Bukharin
Tianyi Liu
Sheng Wang
Simiao Zuo
Weihao Gao
Wen Yan
Tuo Zhao
AI4CE
119
0
0
05 Jun 2023
Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
Aadithya Srikanth
Siddarth Asokan
Nishanth Shetty
C. Seelamantula
298
0
0
02 Jun 2023
On the Effectiveness of Hybrid Mutual Information Estimation
Marco Federici
David Ruhe
Patrick Forré
293
7
0
01 Jun 2023
Previous
1
2
3
4
5
6
7
Next