Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.08737
Cited By
v1
v2 (latest)
On the marginal likelihood and cross-validation
21 May 2019
Edwin Fong
Chris Holmes
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the marginal likelihood and cross-validation"
32 / 32 papers shown
Title
Distributional Training Data Attribution
Bruno Mlodozeniec
Isaac Reid
Sam Power
David M. Krueger
Murat Erdogdu
Richard E. Turner
Roger B. Grosse
TDI
OOD
28
0
0
15 Jun 2025
Spectral information criterion for automatic elbow detection
Luca Martino
Roberto San Millán-Castillo
E. Morgado
70
9
0
17 Aug 2023
Universal and Automatic Elbow Detection for Learning the Effective Number of Components in Model Selection Problems
E. Morgado
Luca Martino
Roberto San Millán-Castillo
68
11
0
17 Aug 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
75
9
0
15 Jul 2023
On Masked Pre-training and the Marginal Likelihood
Pablo Moreno-Muñoz
Pol G. Recasens
Søren Hauberg
SSL
55
6
0
01 Jun 2023
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
72
6
0
14 Oct 2022
Robust leave-one-out cross-validation for high-dimensional Bayesian models
Luca Silva
Giacomo Zanella
40
8
0
19 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
162
24
0
01 Sep 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
66
3
0
10 Mar 2022
Learning Invariant Weights in Neural Networks
Tycho F. A. van der Ouderaa
Mark van der Wilk
97
24
0
25 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
147
58
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
147
48
0
22 Feb 2022
Efficient computation of the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Augustin Chevallier
F. Cazals
Paul Fearnhead
46
13
0
18 Feb 2022
The no-free-lunch theorems of supervised learning
T. Sterkenburg
Peter Grünwald
FedML
73
59
0
09 Feb 2022
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
50
4
0
06 Oct 2021
Adaptation of the Tuning Parameter in General Bayesian Inference with Robust Divergence
S. Yonekura
S. Sugasawa
105
25
0
13 Jun 2021
Conformal Bayesian Computation
Edwin Fong
Chris Holmes
208
24
0
11 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
65
6
0
24 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
137
133
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
106
31
0
10 May 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
150
109
0
11 Apr 2021
Cross-validation: what does it estimate and how well does it do it?
Stephen Bates
Trevor Hastie
Robert Tibshirani
UQCV
100
287
0
01 Apr 2021
Generalization bounds for deep learning
Guillermo Valle Pérez
A. Louis
BDL
82
45
0
07 Dec 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
66
121
0
11 Jul 2020
Fast cross-validation for multi-penalty ridge regression
M. A. van de Wiel
M. V. Nee
A. Rauschenberger
12
3
0
19 May 2020
Marginal likelihood computation for model selection and hypothesis testing: an extensive review
F. Llorente
Luca Martino
D. Delgado
J. Lopez-Santiago
94
85
0
17 May 2020
When are Bayesian model probabilities overconfident?
O. Oelrich
S. Ding
Måns Magnusson
Aki Vehtari
M. Villani
51
17
0
09 Mar 2020
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
112
35
0
12 Sep 2019
Predicting Brazilian court decisions
André Lage-Freitas
H. Allende-Cid
O. Santana
Lívia de Oliveira-Lage
ELM
90
40
0
20 Apr 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
109
106
0
03 Apr 2019
Unbiased and Consistent Nested Sampling via Sequential Monte Carlo
R. Salomone
Leah F. South
A. M. Johansen
Christopher C. Drovandi
Dirk P. Kroese
122
34
0
10 May 2018
1