Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09982
Cited By
v1
v2 (latest)
Hypothesis Testing Interpretations and Renyi Differential Privacy
24 May 2019
Borja Balle
Gilles Barthe
Marco Gaboardi
Justin Hsu
Tetsuya Sato
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hypothesis Testing Interpretations and Renyi Differential Privacy"
50 / 81 papers shown
Title
Certified Unlearning for Neural Networks
Anastasia Koloskova
Youssef Allouah
Animesh Jha
R. Guerraoui
Sanmi Koyejo
MU
17
0
0
08 Jun 2025
GCFL: A Gradient Correction-based Federated Learning Framework for Privacy-preserving CPSS
Jiayi Wan
Xiang Zhu
Fanzhen Liu
Wei Fan
Xiaolong Xu
FedML
45
0
0
04 Jun 2025
Multi-level Certified Defense Against Poisoning Attacks in Offline Reinforcement Learning
Shijie Liu
Andrew C. Cullen
Paul Montague
S. Erfani
Benjamin I. P. Rubinstein
OffRL
AAML
40
1
0
27 May 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
96
1
0
29 Mar 2025
(
ε
,
δ
)
(\varepsilon, δ)
(
ε
,
δ
)
Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Borja Balle
Antti Honkela
104
0
0
13 Mar 2025
Differential Privacy Preserving Distributed Quantum Computing
Hui Zhong
Keyi Ju
Jiachen Shen
Xinyue Zhang
Xiaoqi Qin
Ohtsuki Tomoaki
Miao Pan
Zhu Han
119
0
0
16 Dec 2024
DP-2Stage: Adapting Language Models as Differentially Private Tabular Data Generators
Tejumade Afonja
Hui-Po Wang
Raouf Kerkouche
Mario Fritz
SyDa
194
2
0
03 Dec 2024
Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions
Robin Carpentier
B. Zhao
Hassan Jameel Asghar
Dali Kaafar
121
1
0
18 Nov 2024
Laplace Transform Interpretation of Differential Privacy
Rishav Chourasia
Uzair Javaid
Biplap Sikdar
16
0
0
14 Nov 2024
NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
Marlon Tobaben
Mohamed Ali Souibgui
Rubèn Pérez Tito
Khanh Nguyen
Raouf Kerkouche
...
Josep Lladós
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
FedML
89
0
0
06 Nov 2024
Masked Differential Privacy
David Schneider
Sina Sajadmanesh
Vikash Sehwag
Saquib Sarfraz
Rainer Stiefelhagen
Lingjuan Lyu
Vivek Sharma
56
0
0
22 Oct 2024
DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning Based on Constant-Overhead Linear Secret Resharing
Alexander Bienstock
Ujjwal Kumar
Antigoni Polychroniadou
FedML
77
0
0
21 Oct 2024
Formalization of Differential Privacy in Isabelle/HOL
Tetsuya Sato
Yasuhiko Minamide
24
1
0
20 Oct 2024
Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning
Fengyu Gao
Ruida Zhou
T. Wang
Cong Shen
Jing Yang
87
3
0
15 Oct 2024
The 2020 United States Decennial Census Is More Private Than You (Might) Think
Buxin Su
Weijie J. Su
Chendi Wang
78
3
0
11 Oct 2024
Adaptively Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
125
1
0
02 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
122
0
0
01 Oct 2024
Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement
Jeremiah Birrell
Reza Ebrahimi
R. Behnia
Jason L. Pacheco
98
0
0
19 Aug 2024
Calibrating Noise for Group Privacy in Subsampled Mechanisms
Yangfan Jiang
Xinjian Luo
Yin Yang
Xiaokui Xiao
97
3
0
19 Aug 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
75
5
0
13 Jun 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
163
8
0
10 May 2024
Differentially Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
104
7
0
22 Mar 2024
DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Jonathan Lebensold
Maziar Sanjabi
Pietro Astolfi
Adriana Romero Soriano
Kamalika Chaudhuri
Mike Rabbat
Chuan Guo
DiffM
77
4
0
21 Mar 2024
Differentially Private Representation Learning via Image Captioning
Tom Sander
Yaodong Yu
Maziar Sanjabi
Alain Durmus
Yi-An Ma
Kamalika Chaudhuri
Chuan Guo
95
4
0
04 Mar 2024
Shifted Interpolation for Differential Privacy
Jinho Bok
Weijie Su
Jason M. Altschuler
111
9
0
01 Mar 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
117
8
0
14 Feb 2024
On the Privacy of Selection Mechanisms with Gaussian Noise
Jonathan Lebensold
Doina Precup
Borja Balle
60
0
0
09 Feb 2024
Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners
Rachel Redberg
Antti Koskela
Yu-Xiang Wang
130
6
0
31 Dec 2023
DPSUR: Accelerating Differentially Private Stochastic Gradient Descent Using Selective Update and Release
Jie Fu
Qingqing Ye
Haibo Hu
Zhili Chen
Lulu Wang
Kuncan Wang
Xun Ran
63
17
0
23 Nov 2023
Preserving Node-level Privacy in Graph Neural Networks
Zihang Xiang
Tianhao Wang
Di Wang
74
12
0
12 Nov 2023
DP-DCAN: Differentially Private Deep Contrastive Autoencoder Network for Single-cell Clustering
Huifa Li
Jie Fu
Zhili Chen
Xiaomin Yang
Haitao Liu
Xinpeng Ling
51
1
0
06 Nov 2023
Flow-based Distributionally Robust Optimization
Chen Xu
Jonghyeok Lee
Xiuyuan Cheng
Yao Xie
OOD
116
5
0
30 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
86
17
0
10 Oct 2023
A Unified View of Differentially Private Deep Generative Modeling
Dingfan Chen
Raouf Kerkouche
Mario Fritz
SyDa
75
5
0
27 Sep 2023
Truncated Laplace and Gaussian mechanisms of RDP
Jie Fu
Zhiyu Sun
Haitao Liu
Zhili Chen
16
0
0
22 Sep 2023
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Fumiyuki Kato
Li Xiong
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
FedML
69
4
0
23 Aug 2023
Enhancing the Antidote: Improved Pointwise Certifications against Poisoning Attacks
Shijie Liu
Andrew C. Cullen
Paul Montague
S. Erfani
Benjamin I. P. Rubinstein
AAML
61
6
0
15 Aug 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
76
13
0
08 Jul 2023
ViP: A Differentially Private Foundation Model for Computer Vision
Yaodong Yu
Maziar Sanjabi
Yi Ma
Kamalika Chaudhuri
Chuan Guo
65
13
0
15 Jun 2023
"Private Prediction Strikes Back!'' Private Kernelized Nearest Neighbors with Individual Renyi Filter
Yuqing Zhu
Xuandong Zhao
Chuan Guo
Yu-Xiang Wang
73
4
0
12 Jun 2023
Gaussian Membership Inference Privacy
Tobias Leemann
Martin Pawelczyk
Gjergji Kasneci
71
16
0
12 Jun 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
88
23
0
29 May 2023
Have it your way: Individualized Privacy Assignment for DP-SGD
Franziska Boenisch
Christopher Muhl
Adam Dziedzic
Roy Rinberg
Nicolas Papernot
82
18
0
29 Mar 2023
Multi-Message Shuffled Privacy in Federated Learning
Antonious M. Girgis
Suhas Diggavi
FedML
95
9
0
22 Feb 2023
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
Hui-Po Wang
Dingfan Chen
Raouf Kerkouche
Mario Fritz
FedML
DD
87
4
0
02 Feb 2023
Training Differentially Private Graph Neural Networks with Random Walk Sampling
Morgane Ayle
Jan Schuchardt
Lukas Gosch
Daniel Zügner
Stephan Günnemann
FedML
82
6
0
02 Jan 2023
SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing
Jie Fu
Zhili Chen
Xinpeng Ling
72
1
0
14 Nov 2022
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
82
7
0
08 Nov 2022
PAC Privacy: Automatic Privacy Measurement and Control of Data Processing
Hanshen Xiao
S. Devadas
101
12
0
07 Oct 2022
TAN Without a Burn: Scaling Laws of DP-SGD
Tom Sander
Pierre Stock
Alexandre Sablayrolles
FedML
86
43
0
07 Oct 2022
1
2
Next