Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09982
Cited By
v1
v2 (latest)
Hypothesis Testing Interpretations and Renyi Differential Privacy
24 May 2019
Borja Balle
Gilles Barthe
Marco Gaboardi
Justin Hsu
Tetsuya Sato
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hypothesis Testing Interpretations and Renyi Differential Privacy"
31 / 81 papers shown
Title
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
139
23
0
06 Oct 2022
Renyi Differential Privacy of Propose-Test-Release and Applications to Private and Robust Machine Learning
Jiachen T. Wang
Saeed Mahloujifar
Shouda Wang
R. Jia
Prateek Mittal
AAML
82
5
0
16 Sep 2022
Unraveling the Connections between Privacy and Certified Robustness in Federated Learning Against Poisoning Attacks
Chulin Xie
Yunhui Long
Pin-Yu Chen
Qinbin Li
Arash Nourian
Sanmi Koyejo
Bo Li
FedML
133
13
0
08 Sep 2022
Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census
Daniel Kifer
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
Philip Leclerc
Ashwin Machanavajjhala
William Sexton
Pavel I Zhuravlev
104
27
0
07 Sep 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
65
7
0
20 Aug 2022
Accelerating Vertical Federated Learning
Dongqi Cai
Tao Fan
Yan Kang
Lixin Fan
Mengwei Xu
Shangguang Wang
Qiang Yang
FedML
61
8
0
23 Jul 2022
Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
Chulin Xie
Pin-Yu Chen
Qinbin Li
Arash Nourian
Ce Zhang
Bo Li
FedML
86
16
0
20 Jul 2022
A Generative Framework for Personalized Learning and Estimation: Theory, Algorithms, and Privacy
Kaan Ozkara
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
63
3
0
05 Jul 2022
Shuffle Gaussian Mechanism for Differential Privacy
Seng Pei Liew
Tsubasa Takahashi
FedML
77
2
0
20 Jun 2022
Confidentiality Protection in the 2020 US Census of Population and Housing
John M. Abowd
Michael B. Hawes
62
28
0
07 Jun 2022
Privacy Amplification via Shuffled Check-Ins
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
FedML
103
0
0
07 Jun 2022
Quantum Differential Privacy: An Information Theory Perspective
C. Hirche
Cambyse Rouzé
Daniel Stilck França
108
64
0
22 Feb 2022
Local Differential Privacy for Belief Functions
Qiyu Li
Chunlai Zhou
Biao Qin
Zhiqiang Xu
49
3
0
17 Feb 2022
Defending against Reconstruction Attacks with Rényi Differential Privacy
Pierre Stock
I. Shilov
Ilya Mironov
Alexandre Sablayrolles
AAML
SILM
MIACV
65
40
0
15 Feb 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
95
171
0
13 Jan 2022
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
63
5
0
01 Dec 2021
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
96
100
0
22 Nov 2021
Federated Deep Learning with Bayesian Privacy
Hanlin Gu
Lixin Fan
Bowen Li Jie Li
Yan Kang
Yuan Yao
Qiang Yang
FedML
165
23
0
27 Sep 2021
A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index
Georgios Kaissis
Moritz Knolle
F. Jungmann
Alexander Ziller
Dmitrii Usynin
Daniel Rueckert
59
1
0
22 Sep 2021
Renyi Differential Privacy of the Subsampled Shuffle Model in Distributed Learning
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
69
22
0
19 Jul 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
64
104
0
16 Jun 2021
On the Renyi Differential Privacy of the Shuffle Model
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
A. Suresh
Peter Kairouz
99
44
0
11 May 2021
Federated
f
f
f
-Differential Privacy
Qinqing Zheng
Shuxiao Chen
Qi Long
Weijie J. Su
FedML
149
55
0
22 Feb 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
111
243
0
12 Feb 2021
Three Variants of Differential Privacy: Lossless Conversion and Applications
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
59
39
0
14 Aug 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
77
151
0
21 May 2020
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion
Qinqing Zheng
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
70
23
0
10 Mar 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
82
40
0
16 Jan 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
147
669
0
31 Dec 2019
Deep Learning with Gaussian Differential Privacy
Zhiqi Bu
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
97
209
0
26 Nov 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
163
126
0
04 Jun 2019
Previous
1
2