ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10943
  4. Cited By
Distributionally Robust Optimization and Generalization in Kernel
  Methods

Distributionally Robust Optimization and Generalization in Kernel Methods

27 May 2019
Matthew Staib
Stefanie Jegelka
ArXiv (abs)PDFHTML

Papers citing "Distributionally Robust Optimization and Generalization in Kernel Methods"

34 / 34 papers shown
Title
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
96
18
0
01 Jul 2024
Empirical Bayes for Dynamic Bayesian Networks Using Generalized
  Variational Inference
Empirical Bayes for Dynamic Bayesian Networks Using Generalized Variational Inference
Vyacheslav Kungurtsev
Apaar
Aarya Khandelwal
Parth Sandeep Rastogi
Bapi Chatterjee
Jakub Mareˇcek
BDL
46
0
0
25 Jun 2024
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
135
2
0
29 May 2024
Uncertainty Quantification on Graph Learning: A Survey
Uncertainty Quantification on Graph Learning: A Survey
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Mohit Bansal
AI4CE
86
1
0
23 Apr 2024
Towards Generalizing Inferences from Trials to Target Populations
Towards Generalizing Inferences from Trials to Target Populations
Melody Y Huang
Harsh Parikh
55
2
0
26 Feb 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
87
0
0
21 Nov 2023
Smoothed $f$-Divergence Distributionally Robust Optimization
Smoothed fff-Divergence Distributionally Robust Optimization
Zhen-Yan Liu
Bart P. G. Van Parys
Henry Lam
58
6
0
24 Jun 2023
Adversarial Constrained Bidding via Minimax Regret Optimization with
  Causality-Aware Reinforcement Learning
Adversarial Constrained Bidding via Minimax Regret Optimization with Causality-Aware Reinforcement Learning
Haozhe Jasper Wang
Chao Du
Panyan Fang
Li He
Liangji Wang
Bo Zheng
80
7
0
12 Jun 2023
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Efficient Stochastic Approximation of Minimax Excess Risk Optimization
Lijun Zhang
Haomin Bai
W. Tu
Ping Yang
Yao Hu
113
4
0
31 May 2023
Online Kernel CUSUM for Change-Point Detection
Online Kernel CUSUM for Change-Point Detection
S. Wei
Yao Xie
99
12
0
28 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
108
6
0
02 Nov 2022
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
111
16
0
11 Oct 2022
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Yi-Fan Zhang
Jindong Wang
Jian Liang
Zhang Zhang
Baosheng Yu
Liangdao Wang
Dacheng Tao
Xingxu Xie
OOD
119
17
0
18 Aug 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Anton Van Den Hengel
98
13
0
04 Mar 2022
Minimax Regret Optimization for Robust Machine Learning under
  Distribution Shift
Minimax Regret Optimization for Robust Machine Learning under Distribution Shift
Alekh Agarwal
Tong Zhang
OOD
85
29
0
11 Feb 2022
Holistic Deep Learning
Holistic Deep Learning
Dimitris Bertsimas
Kimberly Villalobos Carballo
L. Boussioux
M. Li
Alex Paskov
I. Paskov
81
2
0
29 Oct 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
143
40
0
24 Sep 2021
A Note on Optimizing Distributions using Kernel Mean Embeddings
A Note on Optimizing Distributions using Kernel Mean Embeddings
Boris Muzellec
Francis R. Bach
Alessandro Rudi
37
4
0
18 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between
  Distributionally Robust Optimization and Data Curation
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
77
19
0
17 Jun 2021
Distributionally Robust Optimization with Markovian Data
Distributionally Robust Optimization with Markovian Data
Mengmeng Li
Tobias Sutter
Daniel Kuhn
39
9
0
12 Jun 2021
Robust Generalization despite Distribution Shift via Minimum
  Discriminating Information
Robust Generalization despite Distribution Shift via Minimum Discriminating Information
Tobias Sutter
Andreas Krause
Daniel Kuhn
OOD
54
10
0
08 Jun 2021
Robust Graph Learning Under Wasserstein Uncertainty
Robust Graph Learning Under Wasserstein Uncertainty
Xiang Zhang
Yinfei Xu
Qinghe Liu
Zhicheng Liu
Jian Lu
Qiao Wang
OOD
80
4
0
10 May 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
64
7
0
16 Feb 2021
Two-sample Test using Projected Wasserstein Distance
Two-sample Test using Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
107
21
0
22 Oct 2020
Large-Scale Methods for Distributionally Robust Optimization
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
89
217
0
12 Oct 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural
  Networks
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
184
313
0
24 Sep 2020
Distributionally Robust Losses for Latent Covariate Mixtures
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
77
81
0
28 Jul 2020
Robust Bayesian Classification Using an Optimistic Score Ratio
Robust Bayesian Classification Using an Optimistic Score Ratio
Viet Anh Nguyen
Nian Si
Jose H. Blanchet
81
13
0
08 Jul 2020
Kernel Distributionally Robust Optimization
Kernel Distributionally Robust Optimization
Jia Jie Zhu
Wittawat Jitkrittum
Moritz Diehl
Bernhard Schölkopf
105
16
0
12 Jun 2020
Principled learning method for Wasserstein distributionally robust
  optimization with local perturbations
Principled learning method for Wasserstein distributionally robust optimization with local perturbations
Yongchan Kwon
Wonyoung Hedge Kim
Joong-Ho Won
M. Paik
96
12
0
05 Jun 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
113
79
0
20 Feb 2020
Distributionally Robust Bayesian Quadrature Optimization
Distributionally Robust Bayesian Quadrature Optimization
Thanh Tang Nguyen
Sunil R. Gupta
Huong Ha
Santu Rana
Svetha Venkatesh
55
28
0
19 Jan 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
153
54
0
28 Oct 2019
Distributionally Robust Optimization: A Review
Distributionally Robust Optimization: A Review
Hamed Rahimian
Sanjay Mehrotra
74
134
0
13 Aug 2019
1