Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11213
Cited By
v1
v2 (latest)
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
27 May 2019
Francesco Croce
Matthias Hein
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Provable robustness against all adversarial $l_p$-perturbations for $p\geq 1$"
49 / 49 papers shown
Title
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Hanxun Huang
Sarah Monazam Erfani
Yige Li
Xingjun Ma
James Bailey
AAML
144
1
0
08 May 2025
Defending Against Frequency-Based Attacks with Diffusion Models
Fatemeh Amerehi
Patrick Healy
AAML
75
0
0
15 Apr 2025
Deep Adversarial Defense Against Multilevel-Lp Attacks
Ren Wang
Yuxuan Li
Alfred Hero
AAML
63
0
0
12 Jul 2024
A Survey of Neural Network Robustness Assessment in Image Recognition
Jie Wang
Jun Ai
Minyan Lu
Haoran Su
Dan Yu
Yutao Zhang
Junda Zhu
Jingyu Liu
AAML
100
3
0
12 Apr 2024
Towards Robust Domain Generation Algorithm Classification
Arthur Drichel
Marc Meyer
Ulrike Meyer
AAML
67
3
0
09 Apr 2024
Tropical Decision Boundaries for Neural Networks Are Robust Against Adversarial Attacks
Kurt Pasque
Christopher Teska
Ruriko Yoshida
Keiji Miura
Jefferson Huang
AAML
96
2
0
01 Feb 2024
FullLoRA: Efficiently Boosting the Robustness of Pretrained Vision Transformers
Zheng Yuan
Jie Zhang
Shiguang Shan
Xilin Chen
102
4
0
03 Jan 2024
Multi-scale Diffusion Denoised Smoothing
Jongheon Jeong
Jinwoo Shin
DiffM
88
8
0
25 Oct 2023
Parameter-Saving Adversarial Training: Reinforcing Multi-Perturbation Robustness via Hypernetworks
Huihui Gong
Minjing Dong
Siqi Ma
S. Çamtepe
Surya Nepal
Chang Xu
AAML
OOD
48
1
0
28 Sep 2023
PRAT: PRofiling Adversarial aTtacks
Rahul Ambati
Naveed Akhtar
Ajmal Mian
Yogesh S Rawat
AAML
51
1
0
20 Sep 2023
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets
Yimu Wang
Dinghuai Zhang
Yihan Wu
Heng Huang
Hongyang R. Zhang
AAML
52
1
0
27 Jun 2023
Certified Adversarial Robustness Within Multiple Perturbation Bounds
Soumalya Nandi
Sravanti Addepalli
Harsh Rangwani
R. Venkatesh Babu
AAML
58
3
0
20 Apr 2023
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
55
5
0
23 Mar 2023
Robust Mode Connectivity-Oriented Adversarial Defense: Enhancing Neural Network Robustness Against Diversified
ℓ
p
\ell_p
ℓ
p
Attacks
Ren Wang
Yuxuan Li
Sijia Liu
AAML
65
0
0
17 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
102
7
0
21 Feb 2023
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
76
7
0
18 Dec 2022
Multiple Perturbation Attack: Attack Pixelwise Under Different
ℓ
p
\ell_p
ℓ
p
-norms For Better Adversarial Performance
Ngoc N. Tran
Anh Tuan Bui
Dinh Q. Phung
Trung Le
AAML
51
1
0
05 Dec 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Zhengchao Wan
OOD
77
4
0
20 Oct 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
43
11
0
14 Jul 2022
UniCR: Universally Approximated Certified Robustness via Randomized Smoothing
Hanbin Hong
Binghui Wang
Yuan Hong
AAML
76
11
0
05 Jul 2022
Formulating Robustness Against Unforeseen Attacks
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
OOD
AAML
66
8
0
28 Apr 2022
How Sampling Impacts the Robustness of Stochastic Neural Networks
Sina Daubener
Asja Fischer
SILM
AAML
44
1
0
22 Apr 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
123
73
0
26 Mar 2022
Reverse Engineering
ℓ
p
\ell_p
ℓ
p
attacks: A block-sparse optimization approach with recovery guarantees
D. Thaker
Paris V. Giampouras
René Vidal
AAML
31
6
0
09 Mar 2022
The Fundamental Limits of Interval Arithmetic for Neural Networks
M. Mirman
Maximilian Baader
Martin Vechev
37
6
0
09 Dec 2021
Adaptive Image Transformations for Transfer-based Adversarial Attack
Zheng Yuan
Jie Zhang
Shiguang Shan
OOD
89
27
0
27 Nov 2021
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Sejun Park
Minkyu Kim
Heung-Chang Lee
Do-Guk Kim
Jinwoo Shin
AAML
85
57
0
17 Nov 2021
Improving Local Effectiveness for Global robust training
Jingyue Lu
M. P. Kumar
AAML
49
0
0
26 Oct 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
155
240
0
01 Aug 2021
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
104
69
0
26 Jul 2021
Selection of Source Images Heavily Influences the Effectiveness of Adversarial Attacks
Utku Ozbulak
Esla Timothy Anzaku
W. D. Neve
Arnout Van Messem
AAML
132
10
0
14 Jun 2021
Relaxing Local Robustness
Klas Leino
Matt Fredrikson
AAML
52
8
0
11 Jun 2021
Adversarial Robustness against Multiple and Single
l
p
l_p
l
p
-Threat Models via Quick Fine-Tuning of Robust Classifiers
Francesco Croce
Matthias Hein
OOD
AAML
67
18
0
26 May 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
111
61
0
08 Mar 2021
A Comprehensive Evaluation Framework for Deep Model Robustness
Jun Guo
Wei Bao
Jiakai Wang
Yuqing Ma
Xing Gao
Gang Xiao
Aishan Liu
Zehao Zhao
Xianglong Liu
Wenjun Wu
AAML
ELM
97
61
0
24 Jan 2021
The Effect of Prior Lipschitz Continuity on the Adversarial Robustness of Bayesian Neural Networks
Arno Blaas
Stephen J. Roberts
BDL
AAML
78
2
0
07 Jan 2021
Towards Defending Multiple
ℓ
p
\ell_p
ℓ
p
-norm Bounded Adversarial Perturbations via Gated Batch Normalization
Aishan Liu
Shiyu Tang
Xinyun Chen
Lei Huang
Zhuozhuo Tu
Xianglong Liu
Dacheng Tao
AAML
110
35
0
03 Dec 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Yue Liu
AAML
123
131
0
09 Sep 2020
Learning perturbation sets for robust machine learning
Eric Wong
J. Zico Kolter
OOD
76
81
0
16 Jul 2020
Adversarial Examples and Metrics
Nico Döttling
Kathrin Grosse
Michael Backes
Ian Molloy
AAML
35
0
0
14 Jul 2020
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey
S. Silva
Peyman Najafirad
AAML
OOD
99
135
0
01 Jul 2020
ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy
Natalia Shepeleva
Werner Zellinger
Michal Lewandowski
Bernhard A. Moser
32
3
0
20 May 2020
How to compare adversarial robustness of classifiers from a global perspective
Niklas Risse
Christina Göpfert
Jan Philip Göpfert
AAML
19
0
0
22 Apr 2020
Approximate Manifold Defense Against Multiple Adversarial Perturbations
Jay Nandy
Wynne Hsu
Mong Li Lee
AAML
55
12
0
05 Apr 2020
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
119
116
0
03 Nov 2019
Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications
Andreas Venzke
Spyros Chatzivasileiadis
87
67
0
03 Oct 2019
Adversarial Robustness Against the Union of Multiple Perturbation Models
Pratyush Maini
Eric Wong
J. Zico Kolter
OOD
AAML
63
151
0
09 Sep 2019
Learning Waveform-Based Acoustic Models using Deep Variational Convolutional Neural Networks
Dino Oglic
Zoran Cvetkovic
Peter Sollich
BDL
39
8
0
23 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
70
37
0
09 Jun 2019
1