ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12173
  4. Cited By
On the Inductive Bias of Neural Tangent Kernels

On the Inductive Bias of Neural Tangent Kernels

29 May 2019
A. Bietti
Julien Mairal
ArXivPDFHTML

Papers citing "On the Inductive Bias of Neural Tangent Kernels"

22 / 72 papers shown
Title
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Linear Mode Connectivity in Multitask and Continual Learning
Linear Mode Connectivity in Multitask and Continual Learning
Seyed Iman Mirzadeh
Mehrdad Farajtabar
Dilan Görür
Razvan Pascanu
H. Ghasemzadeh
CLL
37
139
0
09 Oct 2020
Neural Thompson Sampling
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
26
114
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
30
93
0
22 Sep 2020
The Interpolation Phase Transition in Neural Networks: Memorization and
  Generalization under Lazy Training
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
49
95
0
25 Jul 2020
Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks
Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks
Francis Williams
Matthew Trager
Joan Bruna
Denis Zorin
21
67
0
24 Jun 2020
Generalisation Guarantees for Continual Learning with Orthogonal
  Gradient Descent
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,344
0
18 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Neural Anisotropy Directions
Neural Anisotropy Directions
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
34
16
0
17 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
39
183
0
10 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
42
54
0
25 Feb 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
  Networks
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
On the infinite width limit of neural networks with a standard
  parameterization
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
32
47
0
21 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
38
214
0
03 Dec 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
32
14
0
19 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
27
150
0
13 Sep 2019
Previous
12