Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12247
Cited By
v1
v2
v3 (latest)
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
29 May 2019
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients"
36 / 36 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
122
1
0
01 Jul 2025
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
Haoyang Zheng
Wei Deng
Christian Moya
Guang Lin
94
6
0
22 Jan 2024
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
79
13
0
20 Nov 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
88
12
0
13 Oct 2022
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDL
DRL
101
77
0
31 May 2022
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
141
55
0
01 Mar 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
104
18
0
28 Feb 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
90
15
0
26 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
84
40
0
03 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
88
12
0
02 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
Metropolis Augmented Hamiltonian Monte Carlo
Guangyao Zhou
80
1
0
20 Jan 2022
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
108
26
0
09 Oct 2021
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave Sampling
Keru Wu
S. Schmidler
Yuansi Chen
127
54
0
27 Sep 2021
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
74
8
0
28 Aug 2021
An Introduction to Hamiltonian Monte Carlo Method for Sampling
Nisheeth K. Vishnoi
73
14
0
27 Aug 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
88
21
0
02 Aug 2021
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions
Y. Lee
Ruoqi Shen
Kevin Tian
54
20
0
10 Jun 2021
On Irreversible Metropolis Sampling Related to Langevin Dynamics
Zexi Song
Z. Tan
36
2
0
06 Jun 2021
Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
110
31
0
03 May 2021
Truncated Log-concave Sampling with Reflective Hamiltonian Monte Carlo
Apostolos Chalkis
Vissarion Fisikopoulos
Marios Papachristou
Elias P. Tsigaridas
75
8
0
25 Feb 2021
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
105
66
0
23 Dec 2020
Complexity of zigzag sampling algorithm for strongly log-concave distributions
Jianfeng Lu
Lihan Wang
68
6
0
21 Dec 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
108
36
0
19 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
82
73
0
07 Oct 2020
Generalized Score Matching for General Domains
Shiqing Yu
Mathias Drton
Ali Shojaie
45
19
0
24 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
100
49
0
24 Aug 2020
High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion
Pierre Monmarché
102
47
0
10 Jul 2020
Composite Logconcave Sampling with a Restricted Gaussian Oracle
Ruoqi Shen
Kevin Tian
Y. Lee
66
10
0
10 Jun 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
84
37
0
10 Feb 2020
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
78
22
0
08 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
62
9
0
02 Nov 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
84
85
0
28 Aug 2019
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
100
71
0
19 Jun 2019
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
108
255
0
08 Jan 2018
1