ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12247
  4. Cited By
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
v1v2v3 (latest)

Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients

29 May 2019
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
ArXiv (abs)PDFHTML

Papers citing "Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients"

36 / 36 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
122
1
0
01 Jul 2025
Accelerating Approximate Thompson Sampling with Underdamped Langevin
  Monte Carlo
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
Haoyang Zheng
Wei Deng
Christian Moya
Guang Lin
94
6
0
22 Jan 2024
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
79
13
0
20 Nov 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian
  Monte Carlo with numerical integrators
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
88
12
0
13 Oct 2022
Variational inference via Wasserstein gradient flows
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDLDRL
101
77
0
31 May 2022
Private Convex Optimization via Exponential Mechanism
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
141
55
0
01 Mar 2022
A Proximal Algorithm for Sampling
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
104
18
0
28 Feb 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
90
15
0
26 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
84
40
0
03 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
88
12
0
02 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
Metropolis Augmented Hamiltonian Monte Carlo
Metropolis Augmented Hamiltonian Monte Carlo
Guangyao Zhou
80
1
0
20 Jan 2022
A Proximal Algorithm for Sampling from Non-smooth Potentials
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
108
26
0
09 Oct 2021
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for
  Log-Concave Sampling
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave Sampling
Keru Wu
S. Schmidler
Yuansi Chen
127
54
0
27 Sep 2021
Convergence of position-dependent MALA with application to conditional
  simulation in GLMMs
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
74
8
0
28 Aug 2021
An Introduction to Hamiltonian Monte Carlo Method for Sampling
An Introduction to Hamiltonian Monte Carlo Method for Sampling
Nisheeth K. Vishnoi
73
14
0
27 Aug 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
88
21
0
02 Aug 2021
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned
  Distributions
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions
Y. Lee
Ruoqi Shen
Kevin Tian
54
20
0
10 Jun 2021
On Irreversible Metropolis Sampling Related to Langevin Dynamics
On Irreversible Metropolis Sampling Related to Langevin Dynamics
Zexi Song
Z. Tan
36
2
0
06 Jun 2021
Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
110
31
0
03 May 2021
Truncated Log-concave Sampling with Reflective Hamiltonian Monte Carlo
Truncated Log-concave Sampling with Reflective Hamiltonian Monte Carlo
Apostolos Chalkis
Vissarion Fisikopoulos
Marios Papachristou
Elias P. Tsigaridas
75
8
0
25 Feb 2021
Optimal dimension dependence of the Metropolis-Adjusted Langevin
  Algorithm
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
105
66
0
23 Dec 2020
Complexity of zigzag sampling algorithm for strongly log-concave
  distributions
Complexity of zigzag sampling algorithm for strongly log-concave distributions
Jianfeng Lu
Lihan Wang
68
6
0
21 Dec 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
108
36
0
19 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
82
73
0
07 Oct 2020
Generalized Score Matching for General Domains
Generalized Score Matching for General Domains
Shiqing Yu
Mathias Drton
Ali Shojaie
45
19
0
24 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
100
49
0
24 Aug 2020
High-dimensional MCMC with a standard splitting scheme for the
  underdamped Langevin diffusion
High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion
Pierre Monmarché
102
47
0
10 Jul 2020
Composite Logconcave Sampling with a Restricted Gaussian Oracle
Composite Logconcave Sampling with a Restricted Gaussian Oracle
Ruoqi Shen
Kevin Tian
Y. Lee
66
10
0
10 Jun 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
  Hamiltonian Monte Carlo
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
84
37
0
10 Feb 2020
Estimating Normalizing Constants for Log-Concave Distributions:
  Algorithms and Lower Bounds
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
78
22
0
08 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
62
9
0
02 Nov 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
84
85
0
28 Aug 2019
Bounding the error of discretized Langevin algorithms for non-strongly
  log-concave targets
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
100
71
0
19 Jun 2019
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
108
255
0
08 Jan 2018
1