Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
1905.13211
Cited By
v1
v2
v3
v4 (latest)
What Can Neural Networks Reason About?
30 May 2019
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"What Can Neural Networks Reason About?"
9 / 109 papers shown
Title
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
431
210
0
13 Mar 2020
It's Not What Machines Can Learn, It's What We Cannot Teach
Gal Yehuda
Moshe Gabel
Assaf Schuster
FaML
89
39
0
21 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
148
326
0
14 Feb 2020
Neural Subgraph Isomorphism Counting
Xin Liu
Haojie Pan
Mutian He
Yangqiu Song
Xin Jiang
Lifeng Shang
GNN
99
85
0
25 Dec 2019
Neural Execution of Graph Algorithms
Petar Velickovic
Rex Ying
Matilde Padovano
R. Hadsell
Charles Blundell
GNN
187
178
0
23 Oct 2019
A Hybrid Compact Neural Architecture for Visual Place Recognition
Marvin Chancán
Luis Hernandez-Nunez
A. Narendra
A. Barron
Michael Milford
105
57
0
15 Oct 2019
On the Equivalence between Positional Node Embeddings and Structural Graph Representations
Balasubramaniam Srinivasan
Bruno Ribeiro
126
27
0
01 Oct 2019
Dynamically Pruned Message Passing Networks for Large-Scale Knowledge Graph Reasoning
Xiaoran Xu
Wei Feng
Yunsheng Jiang
Xiaohui Xie
Zhiqing Sun
Zhihong Deng
LRM
160
56
0
25 Sep 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
204
283
0
30 May 2019
Previous
1
2
3