Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01277
Cited By
v1
v2 (latest)
Wasserstein Weisfeiler-Lehman Graph Kernels
4 June 2019
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Wasserstein Weisfeiler-Lehman Graph Kernels"
50 / 109 papers shown
Title
Constrained Sliced Wasserstein Embedding
Navid Naderializadeh
Darian Salehi
Xinran Liu
Soheil Kolouri
34
0
0
02 Jun 2025
WILTing Trees: Interpreting the Distance Between MPNN Embeddings
Masahiro Negishi
Thomas Gärtner
Pascal Welke
OT
26
0
0
30 May 2025
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
96
0
0
20 May 2025
Graph Alignment for Benchmarking Graph Neural Networks and Learning Positional Encodings
Adrien Lagesse
Marc Lelarge
74
0
0
19 May 2025
Metric Graph Kernels via the Tropical Torelli Map
Yueqi Cao
Anthea Monod
42
0
0
17 May 2025
Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
Raffaele Cheula
Mie Andersen
109
0
0
01 May 2025
Network Embedding Exploration Tool (NEExT)
Ashkan Dehghan
P. Prałat
F. Théberge
GNN
81
0
0
20 Mar 2025
Wasserstein-based Kernels for Clustering: Application to Power Distribution Graphs
Alfredo Oneto
B. Gjorgiev
G. Sansavini
132
0
0
18 Mar 2025
Graph Learning for Numeric Planning
Dillon Z. Chen
Sylvie Thiébaux
106
0
0
08 Jan 2025
WLPlan: Relational Features for Symbolic Planning
Dillon Z. Chen
93
0
0
01 Nov 2024
Exploring Consistency in Graph Representations:from Graph Kernels to Graph Neural Networks
Xuyuan Liu
Yinghao Cai
Qihui Yang
Yujun Yan
85
1
0
31 Oct 2024
Learning signals defined on graphs with optimal transport and Gaussian process regression
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
210
1
0
21 Oct 2024
Querying functional and structural niches on spatial transcriptomics data
Mo Chen
Minsheng Hao
Xinquan Liu
Lin Deng
Chen Li
Dongfang Wang
Kui Hua
Xuegong Zhang
Lei Wei
68
0
0
14 Oct 2024
GraphIC: A Graph-Based In-Context Example Retrieval Model for Multi-Step Reasoning
Jiale Fu
Yaqing Wang
Simeng Han
Jiaming Fan
Chen Si
142
1
0
03 Oct 2024
TopER: Topological Embeddings in Graph Representation Learning
Astrit Tola
Funmilola Mary Taiwo
Cüneyt Gürcan Akçora
Baris Coskunuzer
61
0
0
02 Oct 2024
Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
Ali Falahati
Mohammad Mohammadi Amiri
29
1
0
22 Aug 2024
Graph Classification via Reference Distribution Learning: Theory and Practice
Zixiao Wang
Jicong Fan
55
0
0
21 Aug 2024
Improving the Expressiveness of
K
K
K
-hop Message-Passing GNNs by Injecting Contextualized Substructure Information
Tianjun Yao
Yiongxu Wang
Kun Zhang
Shangsong Liang
95
11
0
27 Jun 2024
Geodesic Distance Between Graphs: A Spectral Metric for Assessing the Stability of Graph Neural Networks
S. S. Shuvo
Ali Aghdaei
Zhuo Feng
80
0
0
15 Jun 2024
Rethinking the impact of noisy labels in graph classification: A utility and privacy perspective
De Li
Xianxian Li
Zeming Gan
Qiyu Li
Bin Qu
Jinyan Wang
NoLa
70
2
0
11 Jun 2024
Deep Hierarchical Graph Alignment Kernels
Shuhao Tang
Hao Tian
Xiaofeng Cao
Wei Ye
85
1
0
09 May 2024
Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory
Anwar Said
O. Ahmad
W. Abbas
Mudassir Shabbir
X. Koutsoukos
55
3
0
03 May 2024
Semi-Supervised Image Captioning Considering Wasserstein Graph Matching
Yang Yang
87
0
0
26 Mar 2024
AKBR: Learning Adaptive Kernel-based Representations for Graph Classification
Feifei Qian
Lixin Cui
Yue Wang
Hangyuan Du
Lu Bai
Edwin R. Hancock
52
0
0
24 Mar 2024
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
107
6
0
06 Feb 2024
Empowering Dual-Level Graph Self-Supervised Pretraining with Motif Discovery
Pengwei Yan
Kaisong Song
Zhuoren Jiang
Yangyang Kang
Tianqianjin Lin
Changlong Sun
Xiaozhong Liu
AI4CE
57
3
0
19 Dec 2023
Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs
Xingtong Yu
Zhenghao Liu
Yuan Fang
Zemin Liu
Sihong Chen
Xinming Zhang
127
31
0
26 Nov 2023
Optimal Transport with Cyclic Symmetry
Shoichiro Takeda
Yasunori Akagi
Naoki Marumo
Kenta Niwa
25
0
0
22 Nov 2023
On the Benefit of Optimal Transport for Curriculum Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
Joni Pajarinen
76
3
0
25 Sep 2023
Filtration Surfaces for Dynamic Graph Classification
Franz Srambical
Bastian Rieck
61
1
0
07 Sep 2023
Fast Optimal Transport through Sliced Wasserstein Generalized Geodesics
Guillaume Mahey
Laetitia Chapel
Gilles Gasso
Clément Bonet
Nicolas Courty
OT
47
4
0
04 Jul 2023
Structure-Sensitive Graph Dictionary Embedding for Graph Classification
Guangyi Liu
Tong Zhang
Xudong Wang
Wenting Zhao
Chuanwei Zhou
Zhen Cui
61
1
0
18 Jun 2023
Fisher Information Embedding for Node and Graph Learning
Dexiong Chen
Paolo Pellizzoni
Karsten Borgwardt
GNN
61
2
0
12 May 2023
SMATCH++: Standardized and Extended Evaluation of Semantic Graphs
Juri Opitz
58
23
0
11 May 2023
AERK: Aligned Entropic Reproducing Kernels through Continuous-time Quantum Walks
Lixin Cui
Ming Li
Yue Wang
Lu Bai
Edwin R. Hancock
119
0
0
04 Mar 2023
Distances for Markov Chains, and Their Differentiation
Tristan Brugere
Qingsong Wang
Yusu Wang
OT
OOD
60
4
0
16 Feb 2023
GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks
Zemin Liu
Xingtong Yu
Yuan Fang
Xinming Zhang
LLMAG
AI4CE
102
146
0
16 Feb 2023
Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information Maximization Network
Jinyu Cai
Yi Han
Wenzhong Guo
Jicong Fan
87
9
0
05 Feb 2023
The Weisfeiler-Lehman Distance: Reinterpretation and Connection with GNNs
Samantha Chen
Sunhyuk Lim
Facundo Mémoli
Qingsong Wang
Yusu Wang
59
8
0
01 Feb 2023
Unsupervised Neighborhood Propagation Kernel Layers for Semi-supervised Node Classification
Sonny Achten
F. Tonin
Panagiotis Patrinos
Johan A. K. Suykens
88
4
0
31 Jan 2023
Curvature Filtrations for Graph Generative Model Evaluation
Joshua Southern
Jeremy Wayland
Michael M. Bronstein
Bastian Rieck
82
17
0
30 Jan 2023
Subgraph Centralization: A Necessary Step for Graph Anomaly Detection
Zhuang Zhong
Kai Ming Ting
Guansong Pang
Shuaibin Song
69
8
0
17 Jan 2023
QESK: Quantum-based Entropic Subtree Kernels for Graph Classification
Lu Bai
Lixin Cui
Edwin R. Hancock
64
0
0
10 Dec 2022
HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification
Lu Bai
Lixin Cui
Yue Wang
Ming Li
Edwin R. Hancock
71
50
0
05 Nov 2022
Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
53
8
0
04 Nov 2022
Better Smatch = Better Parser? AMR evaluation is not so simple anymore
Juri Opitz
Anette Frank
69
15
0
12 Oct 2022
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks
Ching-Yao Chuang
Stefanie Jegelka
OOD
116
38
0
04 Oct 2022
Metric Distribution to Vector: Constructing Data Representation via Broad-Scale Discrepancies
Xue Liu
Dan Sun
X. Cao
Hao Ye
Wei Wei
71
0
0
02 Oct 2022
A Simple Way to Learn Metrics Between Attributed Graphs
Yacouba Kaloga
Pierre Borgnat
Amaury Habrard
GNN
61
1
0
26 Sep 2022
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Franka Bause
Nils M. Kriege
CLL
79
6
0
19 Sep 2022
1
2
3
Next