Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01277
Cited By
v1
v2 (latest)
Wasserstein Weisfeiler-Lehman Graph Kernels
4 June 2019
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Wasserstein Weisfeiler-Lehman Graph Kernels"
50 / 109 papers shown
Title
The PWLR Graph Representation: A Persistent Weisfeiler-Lehman scheme with Random Walks for Graph Classification
S. Park
Y. Choi
Dosang Joe
U. J. Choi
Youngho Woo
25
2
0
29 Aug 2022
Literature Review: Graph Kernels in Chemoinformatics
James Young
21
0
0
09 Aug 2022
Wasserstein Graph Distance Based on
L
1
L_1
L
1
-Approximated Tree Edit Distance between Weisfeiler-Lehman Subtrees
Zhongxi Fang
Jianming Huang
Xun Su
Hiroyuki Kasai
73
8
0
09 Jul 2022
SBERT studies Meaning Representations: Decomposing Sentence Embeddings into Explainable Semantic Features
Juri Opitz
Anette Frank
96
37
0
14 Jun 2022
Approximate Network Motif Mining Via Graph Learning
Carlos Oliver
Dexiong Chen
Vincent Mallet
P. Philippopoulos
Karsten Borgwardt
39
4
0
02 Jun 2022
Multi-scale Wasserstein Shortest-path Graph Kernels for Graph Classification
Wei Ye
Hao Tian
Qi Chen
117
2
0
02 Jun 2022
Template based Graph Neural Network with Optimal Transport Distances
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
83
20
0
31 May 2022
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Hongzhi Zhang
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
100
0
0
31 May 2022
Hilbert Curve Projection Distance for Distribution Comparison
Tao Li
Cheng Meng
Hongteng Xu
Jun Yu
86
14
0
30 May 2022
On the Convergence of Semi-Relaxed Sinkhorn with Marginal Constraint and OT Distance Gaps
Takumi Fukunaga
Hiroyuki Kasai
OT
134
2
0
27 May 2022
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Nils M. Kriege
76
16
0
22 May 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
129
40
0
25 Mar 2022
On a linear fused Gromov-Wasserstein distance for graph structured data
Dai Hai Nguyen
Koji Tsuda
OT
45
13
0
09 Mar 2022
GraphDCA -- a Framework for Node Distribution Comparison in Real and Synthetic Graphs
Ciwan Ceylan
Petra Poklukar
Hanna Hultin
Alexander Kravchenko
Anastasia Varava
Danica Kragic
50
1
0
08 Feb 2022
Weisfeiler-Lehman meets Gromov-Wasserstein
Samantha Chen
Sunhyuk Lim
Facundo Mémoli
Qingsong Wang
Yusu Wang
CoGe
78
18
0
05 Feb 2022
A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants
Ningyuan Huang
Soledad Villar
72
64
0
18 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
GNN
127
118
0
18 Dec 2021
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Yuzhe Lu
Xinran Liu
Andrea Soltoggio
Soheil Kolouri
94
8
0
11 Dec 2021
Adversarial Attacks on Graph Classification via Bayesian Optimisation
Xingchen Wan
Henry Kenlay
Binxin Ru
Arno Blaas
Michael A. Osborne
Xiaowen Dong
AAML
96
13
0
04 Nov 2021
Topological Relational Learning on Graphs
Yuzhou Chen
Baris Coskunuzer
Yulia R. Gel
73
44
0
29 Oct 2021
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
60
13
0
22 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
91
23
0
06 Oct 2021
Graphon based Clustering and Testing of Networks: Algorithms and Theory
Mahalakshmi Sabanayagam
L. C. Vankadara
Debarghya Ghoshdastidar
89
5
0
06 Oct 2021
A Regularized Wasserstein Framework for Graph Kernels
Asiri Wijesinghe
Qing Wang
Stephen Gould
66
4
0
06 Oct 2021
Weisfeiler-Leman in the BAMBOO: Novel AMR Graph Metrics and a Benchmark for AMR Graph Similarity
Juri Opitz
Angel Daza
A. Frank
69
31
0
26 Aug 2021
Learning Aesthetic Layouts via Visual Guidance
Qingyuan Zheng
Zhuoru Li
Adam W. Bargteil
52
0
0
13 Jul 2021
Balanced Coarsening for Multilevel Hypergraph Partitioning via Wasserstein Discrepancy
Zhicheng Guo
Jiaxuan Zhao
L. Jiao
Xu Liu
64
0
0
14 Jun 2021
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels
Dai Hai Nguyen
Canh Hao Nguyen
Hiroshi Mamitsuka
56
9
0
08 Jun 2021
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
Leslie O’Bray
Max Horn
Bastian Rieck
Karsten Borgwardt
112
41
0
02 Jun 2021
Graph Similarity Description: How Are These Graphs Similar?
Corinna Coupette
Jilles Vreeken
55
12
0
29 May 2021
Revisiting 2D Convolutional Neural Networks for Graph-based Applications
Yecheng Lyu
Xinming Huang
Ziming Zhang
GNN
67
4
0
23 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
55
24
0
12 May 2021
Smart Vectorizations for Single and Multiparameter Persistence
Baris Coskunuzer
Cüneyt Gürcan Akçora
I. Segovia-Dominguez
Zhiwei Zhen
Murat Kantarcioglu
Yulia R. Gel
30
2
0
10 Apr 2021
Theoretically Improving Graph Neural Networks via Anonymous Walk Graph Kernels
Qingqing Long
Yilun Jin
Yi Wu
Guojie Song
107
38
0
07 Apr 2021
Set Representation Learning with Generalized Sliced-Wasserstein Embeddings
Navid Naderializadeh
Soheil Kolouri
Joseph F. Comer
Reed W. Andrews
Heiko Hoffmann
113
6
0
05 Mar 2021
Online Graph Dictionary Learning
Cédric Vincent-Cuaz
Titouan Vayer
Rémi Flamary
Marco Corneli
Nicolas Courty
72
46
0
12 Feb 2021
A Generalized Weisfeiler-Lehman Graph Kernel
T. Schulz
Tamás Horváth
Pascal Welke
Stefan Wrobel
71
30
0
20 Jan 2021
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
52
20
0
07 Dec 2020
Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene Understanding
Saqib Ali Khan
Yilei Shi
Muhammad Shahzad
Xiaoxiang Zhu
3DPC
3DV
28
0
0
29 Nov 2020
Graph Kernels: State-of-the-Art and Future Challenges
Karsten Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Rieck
AI4TS
99
107
0
07 Nov 2020
Transport based Graph Kernels
Kai Ma
Peng Wan
Daoqiang Zhang
OT
23
1
0
02 Nov 2020
Graph embedding using multi-layer adjacent point merging model
Jianming Huang
Hiroyuki Kasai
22
3
0
28 Oct 2020
Density of States Graph Kernels
Leo Huang
A. Graven
D. Bindel
42
7
0
21 Oct 2020
Provenance Graph Kernel
David Kohan Marzagão
T. D. Huynh
Ayah Helal
Sean Baccas
Luc Moreau
40
1
0
20 Oct 2020
Towards Expressive Graph Representation
Chengsheng Mao
Liang Yao
Yuan Luo
88
2
0
12 Oct 2020
Ordinal Pattern Kernel for Brain Connectivity Network Classification
Kai Ma
Biao Jie
Daoqiang Zhang
25
0
0
18 Aug 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
272
830
0
16 Jul 2020
Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening
Louis Bethune
Yacouba Kaloga
Pierre Borgnat
Aurélien Garivier
Amaury Habrard
28
3
0
07 Jul 2020
A Trainable Optimal Transport Embedding for Feature Aggregation and its Relationship to Attention
Grégoire Mialon
Dexiong Chen
Alexandre d’Aspremont
Julien Mairal
OT
42
0
0
22 Jun 2020
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
101
89
0
16 Jun 2020
Previous
1
2
3
Next