ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01277
  4. Cited By
Wasserstein Weisfeiler-Lehman Graph Kernels
v1v2 (latest)

Wasserstein Weisfeiler-Lehman Graph Kernels

4 June 2019
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
ArXiv (abs)PDFHTML

Papers citing "Wasserstein Weisfeiler-Lehman Graph Kernels"

50 / 109 papers shown
Title
The PWLR Graph Representation: A Persistent Weisfeiler-Lehman scheme
  with Random Walks for Graph Classification
The PWLR Graph Representation: A Persistent Weisfeiler-Lehman scheme with Random Walks for Graph Classification
S. Park
Y. Choi
Dosang Joe
U. J. Choi
Youngho Woo
25
2
0
29 Aug 2022
Literature Review: Graph Kernels in Chemoinformatics
Literature Review: Graph Kernels in Chemoinformatics
James Young
21
0
0
09 Aug 2022
Wasserstein Graph Distance Based on $L_1$-Approximated Tree Edit
  Distance between Weisfeiler-Lehman Subtrees
Wasserstein Graph Distance Based on L1L_1L1​-Approximated Tree Edit Distance between Weisfeiler-Lehman Subtrees
Zhongxi Fang
Jianming Huang
Xun Su
Hiroyuki Kasai
73
8
0
09 Jul 2022
SBERT studies Meaning Representations: Decomposing Sentence Embeddings
  into Explainable Semantic Features
SBERT studies Meaning Representations: Decomposing Sentence Embeddings into Explainable Semantic Features
Juri Opitz
Anette Frank
96
37
0
14 Jun 2022
Approximate Network Motif Mining Via Graph Learning
Approximate Network Motif Mining Via Graph Learning
Carlos Oliver
Dexiong Chen
Vincent Mallet
P. Philippopoulos
Karsten Borgwardt
39
4
0
02 Jun 2022
Multi-scale Wasserstein Shortest-path Graph Kernels for Graph
  Classification
Multi-scale Wasserstein Shortest-path Graph Kernels for Graph Classification
Wei Ye
Hao Tian
Qi Chen
117
2
0
02 Jun 2022
Template based Graph Neural Network with Optimal Transport Distances
Template based Graph Neural Network with Optimal Transport Distances
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
83
20
0
31 May 2022
Graph-level Neural Networks: Current Progress and Future Directions
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Hongzhi Zhang
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNNAI4CE
100
0
0
31 May 2022
Hilbert Curve Projection Distance for Distribution Comparison
Hilbert Curve Projection Distance for Distribution Comparison
Tao Li
Cheng Meng
Hongteng Xu
Jun Yu
86
14
0
30 May 2022
On the Convergence of Semi-Relaxed Sinkhorn with Marginal Constraint and
  OT Distance Gaps
On the Convergence of Semi-Relaxed Sinkhorn with Marginal Constraint and OT Distance Gaps
Takumi Fukunaga
Hiroyuki Kasai
OT
134
2
0
27 May 2022
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Nils M. Kriege
76
16
0
22 May 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
129
40
0
25 Mar 2022
On a linear fused Gromov-Wasserstein distance for graph structured data
On a linear fused Gromov-Wasserstein distance for graph structured data
Dai Hai Nguyen
Koji Tsuda
OT
45
13
0
09 Mar 2022
GraphDCA -- a Framework for Node Distribution Comparison in Real and
  Synthetic Graphs
GraphDCA -- a Framework for Node Distribution Comparison in Real and Synthetic Graphs
Ciwan Ceylan
Petra Poklukar
Hanna Hultin
Alexander Kravchenko
Anastasia Varava
Danica Kragic
50
1
0
08 Feb 2022
Weisfeiler-Lehman meets Gromov-Wasserstein
Weisfeiler-Lehman meets Gromov-Wasserstein
Samantha Chen
Sunhyuk Lim
Facundo Mémoli
Qingsong Wang
Yusu Wang
CoGe
78
18
0
05 Feb 2022
A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants
A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants
Ningyuan Huang
Soledad Villar
72
64
0
18 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
GNN
127
118
0
18 Dec 2021
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Yuzhe Lu
Xinran Liu
Andrea Soltoggio
Soheil Kolouri
94
8
0
11 Dec 2021
Adversarial Attacks on Graph Classification via Bayesian Optimisation
Adversarial Attacks on Graph Classification via Bayesian Optimisation
Xingchen Wan
Henry Kenlay
Binxin Ru
Arno Blaas
Michael A. Osborne
Xiaowen Dong
AAML
96
13
0
04 Nov 2021
Topological Relational Learning on Graphs
Topological Relational Learning on Graphs
Yuzhou Chen
Baris Coskunuzer
Yulia R. Gel
73
44
0
29 Oct 2021
Graph Filtration Kernels
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
60
13
0
22 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
91
23
0
06 Oct 2021
Graphon based Clustering and Testing of Networks: Algorithms and Theory
Graphon based Clustering and Testing of Networks: Algorithms and Theory
Mahalakshmi Sabanayagam
L. C. Vankadara
Debarghya Ghoshdastidar
89
5
0
06 Oct 2021
A Regularized Wasserstein Framework for Graph Kernels
A Regularized Wasserstein Framework for Graph Kernels
Asiri Wijesinghe
Qing Wang
Stephen Gould
66
4
0
06 Oct 2021
Weisfeiler-Leman in the BAMBOO: Novel AMR Graph Metrics and a Benchmark
  for AMR Graph Similarity
Weisfeiler-Leman in the BAMBOO: Novel AMR Graph Metrics and a Benchmark for AMR Graph Similarity
Juri Opitz
Angel Daza
A. Frank
69
31
0
26 Aug 2021
Learning Aesthetic Layouts via Visual Guidance
Learning Aesthetic Layouts via Visual Guidance
Qingyuan Zheng
Zhuoru Li
Adam W. Bargteil
52
0
0
13 Jul 2021
Balanced Coarsening for Multilevel Hypergraph Partitioning via Wasserstein Discrepancy
Zhicheng Guo
Jiaxuan Zhao
L. Jiao
Xu Liu
64
0
0
14 Jun 2021
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph
  kernels
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels
Dai Hai Nguyen
Canh Hao Nguyen
Hiroshi Mamitsuka
56
9
0
08 Jun 2021
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and
  Practical Solutions
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
Leslie O’Bray
Max Horn
Bastian Rieck
Karsten Borgwardt
112
41
0
02 Jun 2021
Graph Similarity Description: How Are These Graphs Similar?
Graph Similarity Description: How Are These Graphs Similar?
Corinna Coupette
Jilles Vreeken
55
12
0
29 May 2021
Revisiting 2D Convolutional Neural Networks for Graph-based Applications
Revisiting 2D Convolutional Neural Networks for Graph-based Applications
Yecheng Lyu
Xinming Huang
Ziming Zhang
GNN
67
4
0
23 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with
  Graphs
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
55
24
0
12 May 2021
Smart Vectorizations for Single and Multiparameter Persistence
Smart Vectorizations for Single and Multiparameter Persistence
Baris Coskunuzer
Cüneyt Gürcan Akçora
I. Segovia-Dominguez
Zhiwei Zhen
Murat Kantarcioglu
Yulia R. Gel
30
2
0
10 Apr 2021
Theoretically Improving Graph Neural Networks via Anonymous Walk Graph
  Kernels
Theoretically Improving Graph Neural Networks via Anonymous Walk Graph Kernels
Qingqing Long
Yilun Jin
Yi Wu
Guojie Song
107
38
0
07 Apr 2021
Set Representation Learning with Generalized Sliced-Wasserstein
  Embeddings
Set Representation Learning with Generalized Sliced-Wasserstein Embeddings
Navid Naderializadeh
Soheil Kolouri
Joseph F. Comer
Reed W. Andrews
Heiko Hoffmann
113
6
0
05 Mar 2021
Online Graph Dictionary Learning
Online Graph Dictionary Learning
Cédric Vincent-Cuaz
Titouan Vayer
Rémi Flamary
Marco Corneli
Nicolas Courty
72
46
0
12 Feb 2021
A Generalized Weisfeiler-Lehman Graph Kernel
A Generalized Weisfeiler-Lehman Graph Kernel
T. Schulz
Tamás Horváth
Pascal Welke
Stefan Wrobel
71
30
0
20 Jan 2021
LCS Graph Kernel Based on Wasserstein Distance in Longest Common
  Subsequence Metric Space
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
52
20
0
07 Dec 2020
Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
  Understanding
Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene Understanding
Saqib Ali Khan
Yilei Shi
Muhammad Shahzad
Xiaoxiang Zhu
3DPC3DV
28
0
0
29 Nov 2020
Graph Kernels: State-of-the-Art and Future Challenges
Graph Kernels: State-of-the-Art and Future Challenges
Karsten Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Rieck
AI4TS
99
107
0
07 Nov 2020
Transport based Graph Kernels
Transport based Graph Kernels
Kai Ma
Peng Wan
Daoqiang Zhang
OT
23
1
0
02 Nov 2020
Graph embedding using multi-layer adjacent point merging model
Graph embedding using multi-layer adjacent point merging model
Jianming Huang
Hiroyuki Kasai
22
3
0
28 Oct 2020
Density of States Graph Kernels
Density of States Graph Kernels
Leo Huang
A. Graven
D. Bindel
42
7
0
21 Oct 2020
Provenance Graph Kernel
Provenance Graph Kernel
David Kohan Marzagão
T. D. Huynh
Ayah Helal
Sean Baccas
Luc Moreau
40
1
0
20 Oct 2020
Towards Expressive Graph Representation
Towards Expressive Graph Representation
Chengsheng Mao
Liang Yao
Yuan Luo
88
2
0
12 Oct 2020
Ordinal Pattern Kernel for Brain Connectivity Network Classification
Ordinal Pattern Kernel for Brain Connectivity Network Classification
Kai Ma
Biao Jie
Daoqiang Zhang
25
0
0
18 Aug 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
272
830
0
16 Jul 2020
Hierarchical and Unsupervised Graph Representation Learning with
  Loukas's Coarsening
Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening
Louis Bethune
Yacouba Kaloga
Pierre Borgnat
Aurélien Garivier
Amaury Habrard
28
3
0
07 Jul 2020
A Trainable Optimal Transport Embedding for Feature Aggregation and its
  Relationship to Attention
A Trainable Optimal Transport Embedding for Feature Aggregation and its Relationship to Attention
Grégoire Mialon
Dexiong Chen
Alexandre d’Aspremont
Julien Mairal
OT
42
0
0
22 Jun 2020
Wasserstein Embedding for Graph Learning
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
101
89
0
16 Jun 2020
Previous
123
Next