ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02032
  4. Cited By
c-Eval: A Unified Metric to Evaluate Feature-based Explanations via
  Perturbation
v1v2 (latest)

c-Eval: A Unified Metric to Evaluate Feature-based Explanations via Perturbation

5 June 2019
Minh Nhat Vu
Truc D. T. Nguyen
Nhathai Phan
Ralucca Gera
My T. Thai
    AAMLFAtt
ArXiv (abs)PDFHTML

Papers citing "c-Eval: A Unified Metric to Evaluate Feature-based Explanations via Perturbation"

15 / 15 papers shown
Shaping History: Advanced Machine Learning Techniques for the Analysis
  and Dating of Cuneiform Tablets over Three Millennia
Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia
Danielle Kapon
Michael Fire
S. Gordin
313
2
0
06 Jun 2024
Dual feature-based and example-based explanation methods
Dual feature-based and example-based explanation methods
A. Konstantinov
Boris V. Kozlov
Stanislav R. Kirpichenko
Lev V. Utkin
FAtt
374
0
0
29 Jan 2024
Visual Explanations with Attributions and Counterfactuals on Time Series
  Classification
Visual Explanations with Attributions and Counterfactuals on Time Series Classification
U. Schlegel
Daniela Oelke
Daniel A. Keim
Mennatallah El-Assady
AI4TSFAtt
287
5
0
14 Jul 2023
Cross-Model Consensus of Explanations and Beyond for Image
  Classification Models: An Empirical Study
Cross-Model Consensus of Explanations and Beyond for Image Classification Models: An Empirical Study
Xuhong Li
Haoyi Xiong
Siyu Huang
Shilei Ji
Dejing Dou
133
11
0
02 Sep 2021
Attention-like feature explanation for tabular data
Attention-like feature explanation for tabular dataInternational Journal of Data Science and Analysis (JDSA), 2021
A. Konstantinov
Lev V. Utkin
FAtt
304
5
0
10 Aug 2021
SurvNAM: The machine learning survival model explanation
SurvNAM: The machine learning survival model explanationNeural Networks (NN), 2021
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
AAMLFAtt
201
36
0
18 Apr 2021
Interpretable Deep Learning: Interpretation, Interpretability,
  Trustworthiness, and Beyond
Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and BeyondKnowledge and Information Systems (KAIS), 2021
Xuhong Li
Haoyi Xiong
Xingjian Li
Xuanyu Wu
Xiao Zhang
Ji Liu
Jiang Bian
Dejing Dou
AAMLFaMLXAIHAI
291
439
0
19 Mar 2021
Interpretable Machine Learning with an Ensemble of Gradient Boosting
  Machines
Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines
A. Konstantinov
Lev V. Utkin
FedMLAI4CE
176
189
0
14 Oct 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph
  Neural Networks
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
229
393
0
12 Oct 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CMLOffRL
261
24
0
26 Jun 2020
A robust algorithm for explaining unreliable machine learning survival
  models using the Kolmogorov-Smirnov bounds
A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov boundsNeural Networks (NN), 2020
M. Kovalev
Lev V. Utkin
AAML
216
32
0
05 May 2020
SurvLIME-Inf: A simplified modification of SurvLIME for explanation of
  machine learning survival models
SurvLIME-Inf: A simplified modification of SurvLIME for explanation of machine learning survival models
Lev V. Utkin
M. Kovalev
E. Kasimov
213
11
0
05 May 2020
SurvLIME: A method for explaining machine learning survival models
SurvLIME: A method for explaining machine learning survival modelsKnowledge-Based Systems (KBS), 2020
M. Kovalev
Lev V. Utkin
E. Kasimov
443
101
0
18 Mar 2020
Towards a Unified Evaluation of Explanation Methods without Ground Truth
Towards a Unified Evaluation of Explanation Methods without Ground Truth
Hao Zhang
Jiayi Chen
Haotian Xue
Quanshi Zhang
XAI
202
9
0
20 Nov 2019
An explanation method for Siamese neural networks
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
208
16
0
18 Nov 2019
1