Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02120
Cited By
v1
v2 (latest)
Adapting Neural Networks for the Estimation of Treatment Effects
5 June 2019
Claudia Shi
David M. Blei
Victor Veitch
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (268★)
Papers citing
"Adapting Neural Networks for the Estimation of Treatment Effects"
22 / 222 papers shown
Title
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
239
36
0
21 Jan 2021
Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
98
13
0
17 Jan 2021
The Causal Learning of Retail Delinquency
Yiyan Huang
Cheuk Hang Leung
Xing Yan
Qi Wu
Nanbo Peng
DongDong Wang
Zhixiang Huang
CML
68
8
0
17 Dec 2020
RealCause: Realistic Causal Inference Benchmarking
Brady Neal
Chin-Wei Huang
Sunand Raghupathi
CML
ELM
72
34
0
30 Nov 2020
Invariant Representation Learning for Treatment Effect Estimation
Claudia Shi
Victor Veitch
David M. Blei
OOD
CML
47
31
0
24 Nov 2020
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
46
6
0
23 Nov 2020
Representation Learning for Integrating Multi-domain Outcomes to Optimize Individualized Treatments
Yuan Chen
D. Zeng
Tianchen Xu
Yuanjia Wang
AI4CE
46
3
0
30 Oct 2020
Adapting Neural Networks for Uplift Models
Mouloud Belbahri
Olivier Gandouet
Ghaith Kazma
48
11
0
30 Oct 2020
Efficient Balanced Treatment Assignments for Experimentation
David Arbour
Drew Dimmery
Anup B. Rao
37
7
0
21 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
67
18
0
06 Oct 2020
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
97
23
0
29 Sep 2020
Targeted VAE: Variational and Targeted Learning for Causal Inference
M. Vowels
Necati Cihan Camgöz
Richard Bowden
BDL
OOD
CML
34
8
0
28 Sep 2020
Sufficient Dimension Reduction for Average Causal Effect Estimation
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
CML
43
15
0
14 Sep 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
90
27
0
27 Aug 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
73
74
0
01 Jul 2020
Causality and Batch Reinforcement Learning: Complementary Approaches To Planning In Unknown Domains
James Bannon
Bradford T. Windsor
Wenbo Song
Tao Li
CML
OOD
OffRL
73
20
0
03 Jun 2020
Influence via Ethos: On the Persuasive Power of Reputation in Deliberation Online
Emaad Manzoor
George H. Chen
Dokyun Lee
Michael D. Smith
24
8
0
01 Jun 2020
Estimating Treatment Effects with Observed Confounders and Mediators
Shantanu Gupta
Zachary Chase Lipton
David Benjamin Childers
CML
56
17
0
26 Mar 2020
ParKCa: Causal Inference with Partially Known Causes
Raquel Y. S. Aoki
Martin Ester
CML
56
5
0
17 Mar 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
90
106
0
27 Feb 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
122
100
0
21 Jan 2020
Learning Interpretable Models with Causal Guarantees
Carolyn Kim
Osbert Bastani
FaML
OOD
CML
75
17
0
24 Jan 2019
Previous
1
2
3
4
5