Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02589
Cited By
Flexibly Fair Representation Learning by Disentanglement
6 June 2019
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Flexibly Fair Representation Learning by Disentanglement"
36 / 86 papers shown
Title
Learning Disentangled Representations in the Imaging Domain
Xiao Liu
Pedro Sanchez
Spyridon Thermos
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
DRL
32
71
0
26 Aug 2021
Impossibility results for fair representations
Tosca Lechner
Shai Ben-David
Sushant Agarwal
Nivasini Ananthakrishnan
FaML
24
14
0
07 Jul 2021
Projection-wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis
Xianjing Liu
Bo Li
Esther E. Bron
W. Niessen
E. Wolvius
Gennady Roshchupkin
CVBM
32
9
0
25 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
24
36
0
10 Jun 2021
Fair Representations by Compression
Xavier Gitiaux
Huzefa Rangwala
FaML
30
14
0
28 May 2021
Fair Feature Distillation for Visual Recognition
S. Jung
Donggyu Lee
Taeeon Park
Taesup Moon
27
75
0
27 May 2021
Discover the Unknown Biased Attribute of an Image Classifier
Zhiheng Li
Chenliang Xu
40
50
0
29 Apr 2021
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
61
38
0
07 Apr 2021
Fairness in TabNet Model by Disentangled Representation for the Prediction of Hospital No-Show
Sabri Boughorbel
Fethi Jarray
A. Kadri
OOD
30
6
0
06 Mar 2021
Improving the Fairness of Deep Generative Models without Retraining
Shuhan Tan
Yujun Shen
Bolei Zhou
183
59
0
09 Dec 2020
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
25
190
0
03 Nov 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
16
241
0
03 Sep 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
31
58
0
29 Jul 2020
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
32
20
0
28 Jul 2020
Data-efficient visuomotor policy training using reinforcement learning and generative models
Ali Ghadirzadeh
Petra Poklukar
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
46
9
0
26 Jul 2020
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
21
25
0
11 Jun 2020
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
27
51
0
21 May 2020
Risk of Training Diagnostic Algorithms on Data with Demographic Bias
Samaneh Abbasi-Sureshjani
Ralf Raumanns
B. Michels
Gerard Schouten
Veronika Cheplygina
FaML
38
35
0
20 May 2020
Convex Representation Learning for Generalized Invariance in Semi-Inner-Product Space
Yingyi Ma
Vignesh Ganapathiraman
Yaoliang Yu
Xinhua Zhang
21
1
0
25 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Zhuowen Tu
DRL
CoGe
34
106
0
02 Apr 2020
Fairness by Learning Orthogonal Disentangled Representations
Mhd Hasan Sarhan
Nassir Navab
Abouzar Eslami
Shadi Albarqouni
FaML
OOD
CML
27
96
0
12 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation
Zeyu Wang
Klint Qinami
Yannis Karakozis
Kyle Genova
P. Nair
Kenji Hata
Olga Russakovsky
38
357
0
26 Nov 2019
Efficient Fair Principal Component Analysis
Mohammad Mahdi Kamani
Farzin Haddadpour
R. Forsati
M. Mahdavi
13
36
0
12 Nov 2019
Auditing and Achieving Intersectional Fairness in Classification Problems
Giulio Morina
V. Oliinyk
J. Waton
Ines Marusic
K. Georgatzis
FaML
19
39
0
04 Nov 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
35
106
0
16 Oct 2019
Learning De-biased Representations with Biased Representations
Hyojin Bahng
Sanghyuk Chun
Sangdoo Yun
Jaegul Choo
Seong Joon Oh
OOD
312
276
0
07 Oct 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
355
4,237
0
23 Aug 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
134
0
07 Jun 2019
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry
X. Xing
Ruiqi Gao
Tian Han
Song-Chun Zhu
Ying Nian Wu
DRL
24
28
0
16 Jun 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
Previous
1
2