Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02735
Cited By
Residual Flows for Invertible Generative Modeling
6 June 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Residual Flows for Invertible Generative Modeling"
41 / 41 papers shown
Title
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
Vinay Shukla
Prachee Sharma
Ryan Rossi
Sungchul Kim
Tong Yu
Aditya Grover
WIGM
106
0
0
15 Apr 2025
Model Synthesis for Zero-Shot Model Attribution
Tianyun Yang
Juan Cao
Danding Wang
Chang Xu
WIGM
93
4
0
20 Jan 2025
Generative Modelling with High-Order Langevin Dynamics
Ziqiang Shi
Rujie Liu
DiffM
74
2
0
03 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
61
3
0
06 Nov 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
61
2
0
29 Jul 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
83
7
0
08 Apr 2024
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
61
2
0
03 Sep 2023
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
49
7
0
31 Aug 2023
Complementary Frequency-Varying Awareness Network for Open-Set Fine-Grained Image Recognition
Qiulei Dong
Hong Wang
Qiulei Dong
49
0
0
14 Jul 2023
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
102
3
0
22 Oct 2020
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
54
34
0
06 Aug 2020
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
46
21
0
16 May 2019
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
55
99
0
07 Feb 2019
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
38
446
0
01 Feb 2019
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
71
621
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
45
166
0
01 Nov 2018
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
42
257
0
29 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
46
861
0
02 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
194
3,110
0
09 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
201
5,024
0
19 Jun 2018
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
49
87
0
14 Jun 2018
Backpropagation for Implicit Spectral Densities
Aditya A. Ramesh
Yann LeCun
35
10
0
01 Jun 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
91
473
0
12 Apr 2018
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
57
118
0
16 Mar 2018
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Insu Han
H. Avron
Jinwoo Shin
26
11
0
18 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
127
4,421
0
16 Feb 2018
Estimating the Spectral Density of Large Implicit Matrices
Ryan P. Adams
Jeffrey Pennington
Matthew J. Johnson
Jamie Smith
Yaniv Ovadia
Brian Patton
J. Saunderson
39
33
0
09 Feb 2018
Searching for Activation Functions
Prajit Ramachandran
Barret Zoph
Quoc V. Le
44
602
0
16 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
57
262
0
12 Sep 2017
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
50
545
0
14 Jul 2017
Unbiasing Truncated Backpropagation Through Time
Corentin Tallec
Yann Ollivier
46
75
0
23 May 2017
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
76
1,805
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
168
3,670
0
26 May 2016
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
377
2,563
0
25 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.2K
192,638
0
10 Dec 2015
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
61
1,139
0
05 Nov 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
238
4,143
0
21 May 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
632
149,474
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
79
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
336
16,972
0
20 Dec 2013
A general method for debiasing a Monte Carlo estimator
D. McLeish
87
115
0
12 May 2010
1