ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02735
  4. Cited By
Residual Flows for Invertible Generative Modeling

Residual Flows for Invertible Generative Modeling

6 June 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
    BDL
    TPM
    DRL
ArXivPDFHTML

Papers citing "Residual Flows for Invertible Generative Modeling"

41 / 41 papers shown
Title
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
Vinay Shukla
Prachee Sharma
Ryan Rossi
Sungchul Kim
Tong Yu
Aditya Grover
WIGM
106
0
0
15 Apr 2025
Model Synthesis for Zero-Shot Model Attribution
Model Synthesis for Zero-Shot Model Attribution
Tianyun Yang
Juan Cao
Danding Wang
Chang Xu
WIGM
93
4
0
20 Jan 2025
Generative Modelling with High-Order Langevin Dynamics
Generative Modelling with High-Order Langevin Dynamics
Ziqiang Shi
Rujie Liu
DiffM
74
2
0
03 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
61
3
0
06 Nov 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
61
2
0
29 Jul 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
83
7
0
08 Apr 2024
Diffusion Models with Deterministic Normalizing Flow Priors
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
61
2
0
03 Sep 2023
Computing excited states of molecules using normalizing flows
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
49
7
0
31 Aug 2023
Complementary Frequency-Varying Awareness Network for Open-Set Fine-Grained Image Recognition
Complementary Frequency-Varying Awareness Network for Open-Set Fine-Grained Image Recognition
Qiulei Dong
Hong Wang
Qiulei Dong
49
0
0
14 Jul 2023
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
102
3
0
22 Oct 2020
Large-time asymptotics in deep learning
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
54
34
0
06 Aug 2020
Efficient Optimization of Loops and Limits with Randomized Telescoping
  Sums
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
46
21
0
16 May 2019
Hybrid Models with Deep and Invertible Features
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
55
99
0
07 Feb 2019
Flow++: Improving Flow-Based Generative Models with Variational
  Dequantization and Architecture Design
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
38
446
0
01 Feb 2019
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
71
621
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
45
166
0
01 Nov 2018
Three Mechanisms of Weight Decay Regularization
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
42
257
0
29 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
46
861
0
02 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
194
3,110
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
201
5,024
0
19 Jun 2018
Autoregressive Quantile Networks for Generative Modeling
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
49
87
0
14 Jun 2018
Backpropagation for Implicit Spectral Densities
Backpropagation for Implicit Spectral Densities
Aditya A. Ramesh
Yann LeCun
35
10
0
01 Jun 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
91
473
0
12 Apr 2018
Reviving and Improving Recurrent Back-Propagation
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
57
118
0
16 Mar 2018
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Insu Han
H. Avron
Jinwoo Shin
26
11
0
18 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
127
4,421
0
16 Feb 2018
Estimating the Spectral Density of Large Implicit Matrices
Estimating the Spectral Density of Large Implicit Matrices
Ryan P. Adams
Jeffrey Pennington
Matthew J. Johnson
Jamie Smith
Yaniv Ovadia
Brian Patton
J. Saunderson
39
33
0
09 Feb 2018
Searching for Activation Functions
Searching for Activation Functions
Prajit Ramachandran
Barret Zoph
Quoc V. Le
44
602
0
16 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
57
262
0
12 Sep 2017
The Reversible Residual Network: Backpropagation Without Storing
  Activations
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
50
545
0
14 Jul 2017
Unbiasing Truncated Backpropagation Through Time
Unbiasing Truncated Backpropagation Through Time
Corentin Tallec
Yann Ollivier
46
75
0
23 May 2017
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
76
1,805
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
168
3,670
0
26 May 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
377
2,563
0
25 Jan 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.2K
192,638
0
10 Dec 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
61
1,139
0
05 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
238
4,143
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
632
149,474
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
79
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
336
16,972
0
20 Dec 2013
A general method for debiasing a Monte Carlo estimator
A general method for debiasing a Monte Carlo estimator
D. McLeish
87
115
0
12 May 2010
1