Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02914
Cited By
v1
v2
v3 (latest)
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
7 June 2019
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations"
49 / 49 papers shown
Title
Variational Inference with Mixtures of Isotropic Gaussians
Marguerite Petit-Talamon
Marc Lambert
Anna Korba
BDL
41
0
0
16 Jun 2025
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
71
0
0
06 May 2025
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
171
0
0
10 Feb 2025
Approximated Orthogonal Projection Unit: Stabilizing Regression Network Training Using Natural Gradient
Shaoqi Wang
Chunjie Yang
Siwei Lou
40
1
0
23 Sep 2024
Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities
José A. Carrillo
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Dongyi Wei
AI4CE
91
4
0
22 Jul 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
74
7
0
25 Jun 2024
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians
Tom Huix
Anna Korba
Alain Durmus
Eric Moulines
89
9
0
06 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
87
2
0
04 Jun 2024
Outlier-robust Kalman Filtering through Generalised Bayes
Gerardo Duran-Martín
Matias Altamirano
Alexander Y. Shestopaloff
Leandro Sánchez-Betancourt
Jeremias Knoblauch
Matt Jones
F. Briol
Kevin P. Murphy
138
11
0
09 May 2024
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
91
31
0
27 Feb 2024
Can We Remove the Square-Root in Adaptive Gradient Methods? A Second-Order Perspective
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard Turner
Alireza Makhzani
ODL
161
13
0
05 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
72
4
0
19 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
51
0
0
01 Jan 2024
Joint State Estimation and Noise Identification Based on Variational Optimization
Hua Lan
Shijie Zhao
Jinjie Hu
Zengfu Wang
Jing-Zhi Fu
41
2
0
15 Dec 2023
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
139
2
0
25 Oct 2023
Optimising Distributions with Natural Gradient Surrogates
Jonathan So
Richard Turner
34
1
0
18 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
75
15
0
05 Oct 2023
Variational Inference with Gaussian Score Matching
Chirag Modi
C. Margossian
Yuling Yao
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
83
13
0
15 Jul 2023
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
133
6
0
03 Jun 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
111
11
0
23 May 2023
Variational Bayes Made Easy
Mohammad Emtiyaz Khan
BDL
51
1
0
27 Apr 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
52
3
0
08 Mar 2023
Natural Gradient Hybrid Variational Inference with Application to Deep Mixed Models
Weiben Zhang
M. Smith
Worapree Maneesoonthorn
Rubén Loaiza-Maya
31
1
0
27 Feb 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
76
19
0
21 Feb 2023
Structured variational approximations with skew normal decomposable graphical models
Roberto Salomone
Xue Yu
David J. Nott
Robert Kohn
77
2
0
07 Feb 2023
BALANCE: Bayesian Linear Attribution for Root Cause Localization
Chaoyu Chen
Hang Yu
Zhichao Lei
Jianguo Li
Shaokang Ren
Tingkai Zhang
Si-Yu Hu
Jianchao Wang
Wenhui Shi
69
7
0
31 Jan 2023
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
86
3
0
09 Nov 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
126
17
0
23 Sep 2022
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDL
DRL
101
77
0
31 May 2022
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
Randy Ardywibowo
Shahin Boluki
Zhangyang Wang
Bobak J. Mortazavi
Shuai Huang
Xiaoning Qian
43
2
0
31 Mar 2022
Natural Gradient Variational Inference with Gaussian Mixture Models
F. Mahdisoltani
BDL
43
1
0
15 Nov 2021
Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation
Linda S. L. Tan
108
13
0
01 Sep 2021
Variational inference for cutting feedback in misspecified models
Xue Yu
David J. Nott
M. Smith
73
14
0
25 Aug 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
162
83
0
09 Jul 2021
Flexible Variational Bayes based on a Copula of a Mixture
David Gunawan
Robert Kohn
David J. Nott
107
12
0
28 Jun 2021
Stein Latent Optimization for Generative Adversarial Networks
Uiwon Hwang
Heeseung Kim
Dahuin Jung
Hyemi Jang
Hyungyu Lee
Sungroh Yoon
GAN
119
2
0
09 Jun 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
43
2
0
19 May 2021
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
79
38
0
01 Mar 2021
Challenges and Opportunities in High-dimensional Variational Inference
Akash Kumar Dhaka
Alejandro Catalina
Manushi K. V. Welandawe
Michael Riis Andersen
Jonathan H. Huggins
Aki Vehtari
50
42
0
01 Mar 2021
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
146
30
0
15 Feb 2021
Meta-strategy for Learning Tuning Parameters with Guarantees
Dimitri Meunier
Pierre Alquier
102
8
0
04 Feb 2021
Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts
Sehwan Kim
Qifan Song
F. Liang
BDL
34
12
0
20 Sep 2020
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks
Alexander Shekhovtsov
Dmitry Molchanov
MQ
79
16
0
11 Jun 2020
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
120
7
0
02 Jun 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
181
36
0
24 Feb 2020
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
121
31
0
29 Oct 2019
Posterior inference unchained with EL_2O
U. Seljak
Byeonghee Yu
62
10
0
14 Jan 2019
1