Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03318
Cited By
v1
v2 (latest)
Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations
7 June 2019
Stephen L. Keeley
D. Zoltowski
Yiyi Yu
Jacob L. Yates
S. L. Smith
Jonathan W. Pillow
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations"
9 / 9 papers shown
Title
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
86
86
0
24 Mar 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
93
33
0
26 Sep 2017
Bayesian latent structure discovery from multi-neuron recordings
Scott W. Linderman
Ryan P. Adams
Jonathan W. Pillow
50
54
0
26 Oct 2016
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
Yuan Zhao
Il-Su Park
91
117
0
11 Apr 2016
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
83
161
0
23 Nov 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
236
1,519
0
08 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,501
0
22 Dec 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
158
1,168
0
31 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
280
2,629
0
29 Jun 2012
1