ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03318
  4. Cited By
Efficient non-conjugate Gaussian process factor models for spike count
  data using polynomial approximations
v1v2 (latest)

Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations

7 June 2019
Stephen L. Keeley
D. Zoltowski
Yiyi Yu
Jacob L. Yates
S. L. Smith
Jonathan W. Pillow
ArXiv (abs)PDFHTML

Papers citing "Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations"

9 / 9 papers shown
Title
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
86
86
0
24 Mar 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
93
33
0
26 Sep 2017
Bayesian latent structure discovery from multi-neuron recordings
Bayesian latent structure discovery from multi-neuron recordings
Scott W. Linderman
Ryan P. Adams
Jonathan W. Pillow
50
54
0
26 Oct 2016
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics
  from Population Spike Trains
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
Yuan Zhao
Il-Su Park
91
117
0
11 Apr 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
83
161
0
23 Nov 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
236
1,519
0
08 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,501
0
22 Dec 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
158
1,168
0
31 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
280
2,629
0
29 Jun 2012
1