ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04015
  4. Cited By
Cormorant: Covariant Molecular Neural Networks

Cormorant: Covariant Molecular Neural Networks

6 June 2019
Brandon M. Anderson
Truong Son-Hy
Risi Kondor
ArXivPDFHTML

Papers citing "Cormorant: Covariant Molecular Neural Networks"

50 / 250 papers shown
Title
Symmetry-preserving graph attention network to solve routing problems at
  multiple resolutions
Symmetry-preserving graph attention network to solve routing problems at multiple resolutions
Cong Dao Tran
Thong Bach
Truong Son-Hy
31
0
0
24 Oct 2023
A Geometric Insight into Equivariant Message Passing Neural Networks on
  Riemannian Manifolds
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
23
0
0
16 Oct 2023
Equivariant Matrix Function Neural Networks
Equivariant Matrix Function Neural Networks
Ilyes Batatia
Lars L. Schaaf
Huajie Chen
Gábor Csányi
Christoph Ortner
Felix A. Faber
32
5
0
16 Oct 2023
Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in
  Position-Orientation Space
Fast, Expressive SE(n)(n)(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
13
24
0
04 Oct 2023
Discovering Symmetry Breaking in Physical Systems with Relaxed Group
  Convolution
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution
Rui Wang
E. Hofgard
Han Gao
Robin Walters
Tess E. Smidt
AI4CE
32
9
0
03 Oct 2023
Learning to Transform for Generalizable Instance-wise Invariance
Learning to Transform for Generalizable Instance-wise Invariance
Yan Liu
Carlos Esteves
Franccois Marelli
Stella X. Yu
OOD
30
1
0
28 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and
  Stable Machine Learned Force Fields
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle
  Counting Power
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle Counting Power
Junru Zhou
Jiarui Feng
Xiyuan Wang
Muhan Zhang
24
8
0
10 Sep 2023
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural
  Networks
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural Networks
Daniel Levy
Sekouba Kaba
Carmelo Gonzales
Santiago Miret
Siamak Ravanbakhsh
38
5
0
06 Sep 2023
Target-aware Variational Auto-encoders for Ligand Generation with
  Multimodal Protein Representation Learning
Target-aware Variational Auto-encoders for Ligand Generation with Multimodal Protein Representation Learning
Haoxiang Luo
Gang Sun
34
2
0
02 Aug 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine
  Learning on 3D Point Clouds
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
18
3
0
27 Jul 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
15
20
0
15 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
26
45
0
10 Jun 2023
Scaling Spherical CNNs
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
14
0
08 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
37
24
0
08 Jun 2023
Discovering Novel Biological Traits From Images Using Phylogeny-Guided
  Neural Networks
Discovering Novel Biological Traits From Images Using Phylogeny-Guided Neural Networks
Mohannad Elhamod
Mridul Khurana
Harish Babu Manogaran
Josef C. Uyeda
M. Balk
...
Wei-Lun Chao
Chuck Stewart
Daniel Rubenstein
T. Berger-Wolf
Anuj Karpatne
14
7
0
05 Jun 2023
Group Invariant Global Pooling
Group Invariant Global Pooling
Kamil Bujel
Yonatan Gideoni
Chaitanya K. Joshi
Pietro Lio'
37
0
0
30 May 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
35
25
0
30 May 2023
Task-Equivariant Graph Few-shot Learning
Task-Equivariant Graph Few-shot Learning
Sungwon Kim
Junseok Lee
Namkyeong Lee
Wonjoon Kim
Seung-Deok Choi
Chanyoung Park
19
6
0
30 May 2023
Geometric Algebra Transformer
Geometric Algebra Transformer
Johann Brehmer
P. D. Haan
S. Behrends
Taco S. Cohen
39
26
0
28 May 2023
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
35
22
0
27 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
26
83
0
23 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
26
35
0
18 May 2023
Towards Multi-Layered 3D Garments Animation
Towards Multi-Layered 3D Garments Animation
Yidi Shao
Chen Change Loy
Bo Dai
3DH
AI4CE
29
10
0
17 May 2023
An Exploration of Conditioning Methods in Graph Neural Networks
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
37
3
0
03 May 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffM
AI4CE
55
135
0
02 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
31
54
0
28 Apr 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
50
34
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
29
48
0
20 Apr 2023
Towards Controllable Diffusion Models via Reward-Guided Exploration
Towards Controllable Diffusion Models via Reward-Guided Exploration
Heng Zhang
Tingyang Xu
21
2
0
14 Apr 2023
A Comprehensive Survey on Deep Graph Representation Learning
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
48
141
0
11 Apr 2023
A new perspective on building efficient and expressive 3D equivariant
  graph neural networks
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
29
33
0
07 Apr 2023
Learning Harmonic Molecular Representations on Riemannian Manifold
Learning Harmonic Molecular Representations on Riemannian Manifold
Yiqun Wang
Yuning Shen
Shih‐Ya Chen
Lihao Wang
Fei Ye
Hao Zhou
43
12
0
27 Mar 2023
The Exact Sample Complexity Gain from Invariances for Kernel Regression
The Exact Sample Complexity Gain from Invariances for Kernel Regression
B. Tahmasebi
Stefanie Jegelka
28
17
0
24 Mar 2023
Rethinking SO(3)-equivariance with Bilinear Tensor Networks
Rethinking SO(3)-equivariance with Bilinear Tensor Networks
C. Shimmin
Zhelun Li
Ema Smith
3DPC
20
0
0
20 Mar 2023
Ewald-based Long-Range Message Passing for Molecular Graphs
Ewald-based Long-Range Message Passing for Molecular Graphs
Arthur Kosmala
Johannes Gasteiger
Nicholas Gao
Stephan Günnemann
68
25
0
08 Mar 2023
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
Dian Wang
Xu Zhu
Jung Yeon Park
Mingxi Jia
Guanang Su
Robert W. Platt
Robin G. Walters
26
13
0
08 Mar 2023
Wigner kernels: body-ordered equivariant machine learning without a
  basis
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
32
15
0
07 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
19
21
0
03 Mar 2023
Completeness of Atomic Structure Representations
Completeness of Atomic Structure Representations
M. J. Willatt
Sergey Pozdnyakov
Christoph Ortner
Michele Ceriotti
15
12
0
28 Feb 2023
Multiresolution Graph Transformers and Wavelet Positional Encoding for
  Learning Hierarchical Structures
Multiresolution Graph Transformers and Wavelet Positional Encoding for Learning Hierarchical Structures
Nhat-Khang Ngô
Truong Son-Hy
Risi Kondor
ViT
AI4CE
29
2
0
17 Feb 2023
Data efficiency and extrapolation trends in neural network interatomic
  potentials
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
34
16
0
12 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Alex Morehead
Jianlin Cheng
DiffM
14
22
0
08 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System
  modeling
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
24
6
0
02 Feb 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
52
83
0
23 Jan 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
35
15
0
21 Jan 2023
SCARP: 3D Shape Completion in ARbitrary Poses for Improved Grasping
SCARP: 3D Shape Completion in ARbitrary Poses for Improved Grasping
Bipasha Sen
Aditya Agarwal
Gaurav Singh
B. Brojeshwar
Srinath Sridhar
Madhava Krishna
3DPC
35
10
0
17 Jan 2023
INO: Invariant Neural Operators for Learning Complex Physical Systems
  with Momentum Conservation
INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation
Ning Liu
Yue Yu
Huaiqian You
Neeraj Tatikola
AI4CE
18
23
0
29 Dec 2022
Lorentz group equivariant autoencoders
Lorentz group equivariant autoencoders
Zichun Hao
Raghav Kansal
Javier Mauricio Duarte
N. Chernyavskaya
BDL
DRL
AI4CE
26
23
0
14 Dec 2022
Previous
12345
Next