ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04584
  4. Cited By
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers

9 June 2019
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
    AAML
ArXivPDFHTML

Papers citing "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers"

50 / 108 papers shown
Title
Bridging the Theoretical Gap in Randomized Smoothing
Bridging the Theoretical Gap in Randomized Smoothing
Blaise Delattre
Paul Caillon
Quentin Barthélemy
Erwan Fagnou
Alexandre Allauzen
AAML
53
0
0
03 Apr 2025
AMUN: Adversarial Machine UNlearning
AMUN: Adversarial Machine UNlearning
A. Boroojeny
Hari Sundaram
Varun Chandrasekaran
MU
AAML
43
0
0
02 Mar 2025
Smoothed Embeddings for Robust Language Models
Smoothed Embeddings for Robust Language Models
Ryo Hase
Md. Rafi Ur Rashid
Ashley Lewis
Jing Liu
T. Koike-Akino
K. Parsons
Y. Wang
AAML
46
0
0
27 Jan 2025
Robust Representation Consistency Model via Contrastive Denoising
Robust Representation Consistency Model via Contrastive Denoising
Jiachen Lei
Julius Berner
Jiongxiao Wang
Zhongzhu Chen
Zhongjia Ba
Kui Ren
Jun Zhu
Anima Anandkumar
DiffM
77
0
0
22 Jan 2025
Average Certified Radius is a Poor Metric for Randomized Smoothing
Average Certified Radius is a Poor Metric for Randomized Smoothing
Chenhao Sun
Yuhao Mao
Mark Niklas Muller
Martin Vechev
AAML
36
0
0
09 Oct 2024
Certified Causal Defense with Generalizable Robustness
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
50
0
0
28 Aug 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
39
1
0
26 Jul 2024
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
36
3
0
03 Jul 2024
Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness
Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness
Vaclav Voracek
AAML
38
1
0
25 Jun 2024
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Feng Chen
OOD
MLT
OODD
77
3
0
05 Jun 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
45
2
0
27 May 2024
Certifying Adapters: Enabling and Enhancing the Certification of
  Classifier Adversarial Robustness
Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness
Jieren Deng
Hanbin Hong
A. Palmer
Xin Zhou
Jinbo Bi
Kaleel Mahmood
Yuan Hong
Derek Aguiar
AAML
40
0
0
25 May 2024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Cornelius Emde
Francesco Pinto
Thomas Lukasiewicz
Philip H. S. Torr
Adel Bibi
AAML
42
0
0
22 May 2024
Boosting Few-Pixel Robustness Verification via Covering Verification
  Designs
Boosting Few-Pixel Robustness Verification via Covering Verification Designs
Yuval Shapira
Naor Wiesel
Shahar Shabelman
Dana Drachsler-Cohen
AAML
34
0
0
17 May 2024
Understanding and Improving Training-free Loss-based Diffusion Guidance
Understanding and Improving Training-free Loss-based Diffusion Guidance
Yifei Shen
Xinyang Jiang
Yezhen Wang
Yifan Yang
Dongqi Han
Dongsheng Li
FaML
23
5
0
19 Mar 2024
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Devansh Bhardwaj
Kshitiz Kaushik
Sarthak Gupta
AAML
24
0
0
12 Feb 2024
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
22
2
0
26 Nov 2023
Fast Certification of Vision-Language Models Using Incremental
  Randomized Smoothing
Fast Certification of Vision-Language Models Using Incremental Randomized Smoothing
Ashutosh Nirala
Ameya Joshi
Chinmay Hegde
S Sarkar
VLM
33
0
0
15 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
P. Krishnamurthy
Farshad Khorrami
Siddharth Garg
26
5
0
27 Oct 2023
Promoting Robustness of Randomized Smoothing: Two Cost-Effective
  Approaches
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
Linbo Liu
T. Hoang
Lam M. Nguyen
Tsui-Wei Weng
AAML
19
0
0
11 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration
  in Adversarial Robustness
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
René Vidal
26
8
0
28 Sep 2023
Certifying LLM Safety against Adversarial Prompting
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
S. Feizi
Himabindu Lakkaraju
AAML
27
164
0
06 Sep 2023
Dynamic ensemble selection based on Deep Neural Network Uncertainty
  Estimation for Adversarial Robustness
Dynamic ensemble selection based on Deep Neural Network Uncertainty Estimation for Adversarial Robustness
Ruoxi Qin
Linyuan Wang
Xuehui Du
Xing-yuan Chen
Binghai Yan
AAML
26
0
0
01 Aug 2023
Certified Zeroth-order Black-Box Defense with Robust UNet Denoiser
Certified Zeroth-order Black-Box Defense with Robust UNet Denoiser
Astha Verma
A. Subramanyam
Siddhesh Bangar
Naman Lal
R. Shah
Shiníchi Satoh
29
4
0
13 Apr 2023
Provable Robustness for Streaming Models with a Sliding Window
Provable Robustness for Streaming Models with a Sliding Window
Aounon Kumar
Vinu Sankar Sadasivan
S. Feizi
OOD
AAML
AI4TS
11
1
0
28 Mar 2023
Diffusion Denoised Smoothing for Certified and Adversarial Robust
  Out-Of-Distribution Detection
Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection
Nicola Franco
Daniel Korth
J. Lorenz
Karsten Roscher
Stephan Guennemann
26
5
0
27 Mar 2023
Less is More: Data Pruning for Faster Adversarial Training
Less is More: Data Pruning for Faster Adversarial Training
Yize Li
Pu Zhao
X. Lin
B. Kailkhura
Ryan Goldh
AAML
15
9
0
23 Feb 2023
Certified Robust Control under Adversarial Perturbations
Certified Robust Control under Adversarial Perturbations
Jinghan Yang
Hunmin Kim
Wenbin Wan
N. Hovakimyan
Yevgeniy Vorobeychik
AAML
14
1
0
04 Feb 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers
  via Randomized Deletion
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
24
15
0
31 Jan 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive
  Smoothing
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
30
18
0
29 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
Confidence-aware Training of Smoothed Classifiers for Certified
  Robustness
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
19
7
0
18 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Pre-trained Encoders in Self-Supervised Learning Improve Secure and
  Privacy-preserving Supervised Learning
Pre-trained Encoders in Self-Supervised Learning Improve Secure and Privacy-preserving Supervised Learning
Hongbin Liu
Wenjie Qu
Jinyuan Jia
Neil Zhenqiang Gong
SSL
28
6
0
06 Dec 2022
Benchmarking Adversarially Robust Quantum Machine Learning at Scale
Benchmarking Adversarially Robust Quantum Machine Learning at Scale
Maxwell T. West
S. Erfani
C. Leckie
M. Sevior
Lloyd C. L. Hollenberg
Muhammad Usman
AAML
OOD
22
33
0
23 Nov 2022
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
20
6
0
02 Nov 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
16
7
0
25 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
26
4
0
20 Oct 2022
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers
Gaurav Kumar Nayak
Ruchit Rawal
Anirban Chakraborty
11
3
0
17 Oct 2022
Certified Training: Small Boxes are All You Need
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
31
45
0
10 Oct 2022
Audit and Improve Robustness of Private Neural Networks on Encrypted
  Data
Audit and Improve Robustness of Private Neural Networks on Encrypted Data
Jiaqi Xue
Lei Xu
Lin Chen
W. Shi
Kaidi Xu
Qian Lou
AAML
20
5
0
20 Sep 2022
CARE: Certifiably Robust Learning with Reasoning via Variational
  Inference
CARE: Certifiably Robust Learning with Reasoning via Variational Inference
Jiawei Zhang
Linyi Li
Ce Zhang
Bo-wen Li
AAML
OOD
40
8
0
12 Sep 2022
GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
  Robust Electrocardiogram Prediction
GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for Robust Electrocardiogram Prediction
Jiacheng Zhu
Jielin Qiu
Zhuolin Yang
Douglas Weber
M. Rosenberg
Emerson Liu
Bo-wen Li
Ding Zhao
OOD
28
13
0
02 Aug 2022
RUSH: Robust Contrastive Learning via Randomized Smoothing
Yijiang Pang
Boyang Liu
Jiayu Zhou
OOD
AAML
19
1
0
11 Jul 2022
IBP Regularization for Verified Adversarial Robustness via
  Branch-and-Bound
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
40
17
0
29 Jun 2022
Riemannian data-dependent randomized smoothing for neural networks
  certification
Riemannian data-dependent randomized smoothing for neural networks certification
Pol Labarbarie
H. Hajri
M. Arnaudon
23
4
0
21 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at
  Scale
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
24
12
0
13 Jun 2022
Building Robust Ensembles via Margin Boosting
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
40
15
0
07 Jun 2022
123
Next